NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Global Summary MGS TES Data and Mars-Gram ValidationMars Global Reference Atmospheric Model (Mars-GRAM 2001) is an engineering-level Mars atmosphere model widely used for many Mars mission applications. From 0-80 km, it is based on NASA Ames Mars General Circulation Model (MGCM), while above 80 km it is based on University of Arizona Mars Thermospheric General Circulation Model. Mars-GRAM 2001 and MGCM use surface topograph$ from Mars Global Surveyor Mars Orbiting Laser Altimeter (MOLA). Validation studies are described comparing Mars-GRAM with a global summary data set of Mars Global Surveyor Thermal Emission Spectrometer (TES) data. TES averages and standard deviations were assembled from binned TES data which covered surface to approx. 40 km, over more than a full Mars year (February, 1999 - June, 2001, just before start of a Mars global dust storm). TES data were binned in 10-by-10 degree latitude-longitude bins (i.e. 36 longitude bins by 19 latitude bins), 12 seasonal bins (based on 30 degree increments of Ls angle). Bin averages and standard deviations were assembled at 23 data levels (temperature at 21 pressure levels, plus surface temperature and surface pressure). Two time-of day bins were used: local time near 2 or 14 hours local time). Two dust optical depth bins wereused: infrared optical depth either less than or greater than 0.25 (which corresponds to visible optical depth either less than or greater than about 0.5). For interests in aerocapture and precision entry and landing, comparisons focused on atmospheric density. TES densities versus height were computed from TES temperature versus pressure, using assumptions of perfect gas law and hydrostatics. Mars-GRAM validation studies used density ratio (TES/Mars-GRAM) evaluated at data bin center points in space and time. Observed average TES/Mars-GRAM density ratios were generally 1+/-0.05, except at high altitudes (15-30 km, depending on season) and high latitudes (> 45 deg N), or at most altitudes in the southern hemisphere at Ls approx. 90 and 180deg). Compared to TES averages for a given latitude and season, TES data had average density standard deviation about the mean of approx. 65-10.5% (varying with height) for all data, or approx. 5-12%, depending on time of day and dust optical depth. Average standard deviation of TES/Mars-GRAM density ratio was 8.9% for local time 2 hours and 7.1% for local time 14 hours. Thus standard deviation of observed TES/Mars-GRAM density ratio, evaluated at matching positions and times, is about the same as the standard deviation of TES data about the TES mean value at a given position and season.
Document ID
20030001125
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Justus, C.
(Computer Sciences Corp. United States)
Johnson, D.
(NASA Marshall Space Flight Center Huntsville, AL United States)
Parker, Nelson C.
Date Acquired
August 21, 2013
Publication Date
October 2, 2002
Subject Category
Lunar And Planetary Science And Exploration
Meeting Information
Meeting: COSPAR 2002 World Space Congress
Location: Houston, TX
Country: United States
Start Date: October 10, 2002
End Date: October 19, 2002
Sponsors: Committee on Space Research
Funding Number(s)
CONTRACT_GRANT: NAS8-60000
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available