NASA Logo, External Link
Facebook icon, External Link to NASA STI page on Facebook Twitter icon, External Link to NASA STI on Twitter YouTube icon, External Link to NASA STI Channel on YouTube RSS icon, External Link to New NASA STI RSS Feed AddThis share icon
 

Record Details

Record 28 of 1115
Convection and Easterly Wave Structure Observed in the Eastern Pacific Warm-Pool during EPIC-2001
Author and Affiliation:
Peterson, Walter A.(NASA Marshall Space Flight Center, Huntsville, AL United States)
Cifelli, R.(NASA Marshall Space Flight Center, Huntsville, AL United States)
Boccippio, D.(NASA Marshall Space Flight Center, Huntsville, AL United States)
Rutledge, S. A.(NASA Marshall Space Flight Center, Huntsville, AL United States)
Fairall, C. W.(NASA Marshall Space Flight Center, Huntsville, AL United States)
Arnold, James E. [Technical Monitor]
Abstract: During September-October 2001, the East Pacific Investigation of Climate Processes in the Coupled Ocean-Atmosphere System (EPIC-2001) ITCZ field campaign focused on studies of deep convection in the warm-pool region of the East Pacific. In addition to the TAO mooring array, observational platforms deployed during the field phase included the NOAA ship RN Ronald H. Brown, the NSF ship RN Horizon, and the NOAA P-3 and NCAR C-130 aircraft. This study combines C-band Doppler radar, rawinsonde, and surface heat flux data collected aboard the RN Brown to describe ITCZ convective structure and rainfall statistics in the eastern Pacific as a function of 3-5 day easterly wave phase. Three distinct easterly wave passages occurred during EPIC-2001. Wind and thermodynamic data reveal that the wave trough axes exhibited positively correlated U and V winds and a slight westward phase tilt with height. A relatively strong (weak) northeasterly deep tropospheric shear followed the trough (ridge) axis. Temperature and humidity perturbations exhibited mid-to upper level cooling (warming) and drying (moistening) in the northerly (trough and southerly) phase. At low levels warming (cooling) occurred in the northerly (southerly) phase with little change in the relative humidity, though mixed layer mixing ratios were larger during the northerly phase. When composited, radar, sounding, lightning and surface heat flux observations suggest the following systematic behavior as a function of wave phase: approximately zero to one quarter wavelength ahead of (behind) the wave trough in northerly (southerly) flow, larger (smaller) CAPE, lower (higher) CIN, weaker (stronger) tropospheric shear, higher (lower) conditional mean rain rates, higher (lower) lightning flash densities, and more (less) robust convective vertical structure occurred. Latent and sensible heat fluxes reached a minimum in the northerly phase and then increased through the trough, reaching a peak during the ridge phase (leading the peak in CAPE). From a radar echo coverage perspective, larger areas of light rain and slightly larger (10%) area averaged rain rates occurred in the vicinity of, and just behind, the trough axes in southerly flow. Importantly, the transition in convective structure observed across the trough axis when considered with the relatively small change in area mean rain rates suggests the presence of a transition in the vertical structure of diabatic heating across the easterly waves examined. The inferred transition in heating structure is supported by radar diagnosed divergence profiles that exhibit convective (stratiform) characteristics ahead of (behind) the trough.
Publication Date: Jan 01, 2002
Document ID:
20030002634
(Acquired Jan 10, 2003)
Subject Category: ENVIRONMENT POLLUTION
Document Type: Preprint
Financial Sponsor: NASA Marshall Space Flight Center; Huntsville, AL United States
Organization Source: NASA Marshall Space Flight Center; Huntsville, AL United States
Description: 1p; In English
Distribution Limits: Unclassified; Publicly available; Unlimited
Rights: No Copyright
NASA Terms: CONVECTION; CLIMATOLOGY; METEOROLOGY; OCEAN DYNAMICS; PACIFIC OCEAN; ATMOSPHERIC MODELS; TROUGHS; DOPPLER RADAR; OCEAN DATA ACQUISITIONS SYSTEMS; SEA SURFACE TEMPERATURE; HUMIDITY; DATA PROCESSING; RAWINSONDES; WIND MEASUREMENT
Availability Source: Other Sources
Availability Notes: Abstract Only
› Back to Top
Find Similar Records
NASA Logo, External Link
NASA Official: Gerald Steeman
Site Curator: STI Program
Last Modified: August 22, 2011
Contact Us