NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
PCS: The First Fluid Physics Payload on ISSThe Physics of Colloids in Space (PCS) experiment was accommodated within International Space Station (ISS) EXpedite the PRocessing of Experiments to Space Station (EXPRESS) Rack 2 and was remotely operated from early June 2001 until February 2002 from NASA Glenn Research Center's Telescience Support Center in Cleveland, Ohio and from a remote site at Harvard University in Cambridge, Massachusetts. PCS is an experiment conceived by Professor David A. Weitz of Harvard University (the Principal Investigator), focusing on the behavior of three different classes of colloid mixtures. The sophisticated light scattering instrumentation comprising PCS is capable of color imaging, and dynamic and static light scattering from 11 to 169 degrees, Bragg scattering over the range from 10 to 60 degrees, and laser light scattering at low angles from 0.3 to 6.0 degrees. The PCS instrumentation performed remarkably well, demonstrating a flexibility that enabled experiments to be performed that had not been envisioned prior to launch. While on-orbit, PCS accomplished 2400 hours of science operations, and was declared a resounding success. Each of the eight sample cells worked well and produced interesting and important results. Crystal nucleation and growth and the resulting structures of two binary colloidal crystal alloys were studied, with the long duration microgravity environment of the ISS facilitating extended studies on the growth and coarsening characteristics of the crystals. In another experiment run, the de-mixing of the colloid-polymer critical-point sample was studied as it phase-separates into two phases, one that resembles a gas and one that resembles a liquid. This process was studied over four decades of length scale, from 1 micron to 1 centimeter, behavior that cannot be observed in this sample on Earth because sedimentation would cause the colloids to fall to the bottom of the cell faster than the de-mixing process could occur. Similarly, the study of gelation and aging of another colloid-polymer sample, the colloid-polymer gel, also provided valuable information on gelation mechanisms, as did investigations on the extremely the low concentration silica and polystyrene fractal gel samples.
Document ID
20030005530
Acquisition Source
Glenn Research Center
Document Type
Conference Paper
Authors
Doherty, M.
(NASA Glenn Research Center Cleveland, OH United States)
Sankaran, S.
(National Center for Microgravity Research on Fluids and Combustion Cleveland, OH United States)
Date Acquired
August 21, 2013
Publication Date
November 1, 2002
Publication Information
Publication: Sixth Microgravity Fluid Physics and Transport Phenomena Conference: Exposition Topical Areas 1-6
Volume: 2
Subject Category
Fluid Mechanics And Thermodynamics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available