NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Understanding How Space Travel Affects Blood Vessels: Arterial Remodeling and Functional Adaptations Induced by MicrogravityEver rise quickly from the couch to get something from the kitchen and suddenly feel dizzy? With a low heart rate and relaxed muscles, the cardiovascular system does not immediately provide the resistance necessary to keep enough blood going to your head. Gravity wins, at least for a short time, before your heart and blood vessels can respond to the sudden change in position and correct the situation. Actually, the human cardiovascular system is quite well adapted to the constant gravitational force of the Earth. When standing, vessels in the legs constrict to prevent blood from collecting in the lower extremities. In the space environment, the usual head-to-foot blood pressure and tissue fluid gradients that exist during the upright posture on Earth are removed. The subsequent shift in fluids from the lower to the upper portions of the body triggers adaptations within the cardiovascular system to accommodate the new pressure and fluid gradients. In animal models that simulate microgravity, the vessels in the head become more robust while those in the lower limbs become thin and lax. Similar changes may also occur in humans during spaceflight and while these adaptations are appropriate for a microgravity environment, they can cause problems when the astronauts return to Earth or perhaps another planet. Astronauts often develop orthostatic intolerance which means they become dizzy or faint when standing upright. This dizziness can persist for a number of days making routine activities difficult. In an effort to understand the physiological details of these cardiovascular adaptations, Dr. Michael Delp at Texas A&M University, uses the rat as a model for his studies. For the experiment flown on STS-107, he will test the hypothesis that blood vessels in the rats' hindlimbs become thinner, weaker, and constrict less in response to pressure changes and to chemical signals when exposed to microgravity. In addition, he will test the hypothesis that arteries in the brain become thicker as a result of microgravity-induced fluid shifts toward the head.
Document ID
20030011387
Acquisition Source
Ames Research Center
Document Type
Other
Authors
Delp, Michael
(Texas A&M Univ. College Station, TX United States)
Vasques, Marilyn
(NASA Ames Research Center Moffett Field, CA United States)
Aquilina, Rudy
Date Acquired
August 21, 2013
Publication Date
December 16, 2002
Publication Information
Publication: STS 107 Shuttle Press Kit: Providing 24/7 Space Science Research
Subject Category
Aerospace Medicine
Report/Patent Number
NASA/KSC-2002-057a
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available