NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Tackling a Hot Paradox: Laminar Soot Processes-2 (LSP-2)The last place you want to be in traffic is behind the bus or truck that is belching large clouds of soot onto your freshly washed car. Besides looking and smelling bad, soot is a health hazard. Particles range from big enough to see to microscopic and can accumulate in the lungs, potentially leading to debilitating or fatal lung diseases. Soot is wasted energy, and therein lies an interesting paradox: Soot forms in a flame's hottest regions where you would expect complete combustion and no waste. Soot enhances the emissions of other pollutants (carbon monoxide and polyaromatic hydrocarbons, etc.) from flames and radiates unwanted heat to combustion chambers (a candle's yellowish glow is soot radiating heat), among other effects. The mechanisms of soot formation are among the most important unresolved problems of combustion science because soot affects contemporary life in so many ways. Although we have used fire for centuries, many fundamental aspects of combustion remain elusive, in part because of limits imposed by the effects of gravity on Earth. Hot or warm air rises quickly and draws in fresh cold air behind it, thus giving flames the classical teardrop shape. Reactions occur in a very small zone, too fast for scientists to observe, in detail, what is happening inside the flame. The Laminar Soot Processes (LSP-2) experiments aboard STS-107 will use the microgravity environment of space to eliminate buoyancy effects and thus slow the reactions inside a flame so they can be more readily studied. 'Laminar' means a simple, smooth fuel jet burning in air, somewhat like a butane lighter. This classical flame approximates combustion in diesel engines, aircraft jet propulsion engines, and furnaces and other devices. LSP-2 will expand on surprising results developed from its first two flights in 1997. The data suggest the existence of a universal relationship, the soot paradigm, that, if proven, will be used to model and control combustion systems on Earth. STS-107 experiments also will help set the stage for extended combustion experiments aboard the International Space Station.
Document ID
20030011403
Acquisition Source
Glenn Research Center
Document Type
Other
Authors
Faeth, Gerard M.
(Michigan Univ. Ann Arbor, MI United States)
Urban, David L.
(NASA Glenn Research Center Cleveland, OH United States)
Over, Ann
Date Acquired
August 21, 2013
Publication Date
December 16, 2002
Publication Information
Publication: STS 107 Shuttle Press Kit: Providing 24/7 Space Science Research
Subject Category
Environment Pollution
Report/Patent Number
NASA/FS-2002-06-072-MSFC
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available