NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Sensitivity of Precipitation Processes to Microphysics and Resolution in a Cloud Resolving ModelThe Goddard Cumulus Ensemble (GCE) model examines the impact of various microphysical schemes, and vertical and horizontal resolution in the development, intensity and rainfall associated with mesoscale convective systems, idealized hurricanes and an ensemble of clouds. The model variables include horizontal and vertical velocities, potential temperature, perturbation pressure, turbulent kinetic energy, and mixing rations of all water phases (vapor, liquid and ice). The major characteristics of the GCE model are the explicit representation of warm rain and ice microphysical processes, and their complex interactions with solar and infrared radiative transfer processes and with surface processes. For idealized hurricanes, an axisymmetric version of the GCE model was developed and used to simulate the tropical cyclogenesis process using both a Rankin vortex and saturated air within a specified radius as initial conditions. For mesoscale convective systems, the 3-D version of the GCE model was use to simulate squall lines that developed in the western Pacific, South China Sea, eastern Atlantic, South America and central U.S. FOr the cloud ensemble, the GCE model was integrated for several days in order to have a good sampling of cloud statistics. In this paper, the sensitivities of hurricane intensity to various microphysical processes and model grid resolutio will be examined. This will be mainly achieved by performing sensitivity tests using various horizontal (from 1-to 5-km) and vertical resolutions (from 20- to 200-m in the lower troposphere to 200- to 500m in the middle and upper troposphere). Sensitivity test using various microphysical schemes (warm rain only, and three ice with either graupel or hail) will also be performed. The thermodynamic and water budget associated with various types of precipitation systems will also be evaluated. The budgets will be calculated for different regions (i.e., convective and stratiform regions).
Document ID
20030052066
Acquisition Source
Goddard Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Tao, Wei-Kuo
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2003
Subject Category
Meteorology And Climatology
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available