NTRS - NASA Technical Reports Server

Back to Results
Prospect of Using Numerical Dynamo Model for Prediction of Geomagnetic Secular VariationModeling of the Earth's core has reached a level of maturity to where the incorporation of observations into the simulations through data assimilation has become feasible. Data assimilation is a method by which observations of a system are combined with a model output (or forecast) to obtain a best guess of the state of the system, called the analysis. The analysis is then used as an initial condition for the next forecast. By doing assimilation, not only we shall be able to predict partially secular variation of the core field, we could also use observations to further our understanding of dynamical states in the Earth's core. One of the first steps in the development of an assimilation system is a comparison between the observations and the model solution. The highly turbulent nature of core dynamics, along with the absence of any regular external forcing and constraint (which occurs in atmospheric dynamics, for example) means that short time comparisons (approx. 1000 years) cannot be made between model and observations. In order to make sensible comparisons, a direct insertion assimilation method has been implemented. In this approach, magnetic field observations at the Earth's surface have been substituted into the numerical model, such that the ratio of the multiple components and the dipole component from observation is adjusted at the core-mantle boundary and extended to the interior of the core, while the total magnetic energy remains unchanged. This adjusted magnetic field is then used as the initial field for a new simulation. In this way, a time tugged simulation is created which can then be compared directly with observations. We present numerical solutions with and without data insertion and discuss their implications for the development of a more rigorous assimilation system.
Document ID
Document Type
Conference Paper
Kuang, Weijia (NASA Goddard Space Flight Center Greenbelt, MD, United States)
Tangborn, Andrew (Maryland Univ. Baltimore County Catonsville, MD, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2003
Subject Category
Meeting Information
EGS-AGU Joint Assembly(Nice)
Distribution Limits