NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Quasi-One-Dimensional Modeling of Pulse Detonation Rocket EnginesPulsed detonation rocket engines (PDREs) have generated considerable research interest in recent years as a chemical propulsion system potentially offering improved performance and reduced complexity compared to conventional rocket engines. The detonative mode of combustion employed by these devices offers a thermodynamic advantage over the constant-pressure deflagrative combustion mode used in conventional rocket engines and gas turbines. However, while this theoretical advantage has spurred a great deal of interest in building PDRE devices, the unsteady blowdown process intrinsic to the PDRE has made realistic estimates of the actual propulsive performance problematic. The recent review article by Kailasanath highlights some of the difficulties in comparing the available experimental measurements with numerical models. In a previous paper by the author, parametric studies of the performance of a single, straight-tube PDRE were reported. A 1-D, unsteady method of characteristics code, employing a constant-gamma assumption behind the detonation front, was developed for that study. Models of this type are computationally inexpensive, and are particularly useful for parametric performance comparisons. For example, a plot showing the specific impulse of various PDRE and steady-state rocket engine (SSRE) configurations as a function of blowdown pressure ratio. The performance curves clearly indicate that a straight-tube PDRE is superior in specific impulse to a SSRE with a sonic nozzle over the entire range of pressure ratios. Note, however, that a straight-tube PDRE in general does not compare favorably to a SSRE fitted with an optimized de Laval supersonic nozzle, particularly at the high pressure ratios typical for boost or in-space rocket applications. However, the calculations also show that if a dynamically optimized, supersonic de Laval nozzle could be could be fitted to a PDRE, then the specific impulse of the device would exceed that of a comparable SSRE. While such a nozzle is a considerable idealization, it is clear that nozzle design and optimization will play a critical role in whether the performance potential of PDREs can be effectively realized in practice. In order to study PDRE nozzle issues with greater accuracy, a quasi-one-dimensional, finite-rate chemistry CFD code has been developed by the author. Comparisons of the code with both the previous MOC model and experimental data from Stanford University are reported. The effect of constant-gamma and finite-rate chemistry assumptions on the flowfield and performance is examined. Parametric studies of the effect of nozzle throat size and expansion ratio, at various blowdown pressure ratios, are reported.
Document ID
20030066431
Acquisition Source
Marshall Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Morris, Christopher I.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2002
Subject Category
Spacecraft Propulsion And Power
Meeting Information
Meeting: 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit
Location: Huntsville, AL
Country: United States
Start Date: July 20, 2003
End Date: July 23, 2003
Sponsors: Society of Automotive Engineers, Inc., American Society for Electrical Engineers, American Society of Mechanical Engineers, American Inst. of Aeronautics and Astronautics
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available