NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Gibbs-Thomson Law for Singular Step Segments: Thermodynamics Versus KineticsClassical Burton-Cabrera-Frank theory presumes that thermal fluctuations are so fast that at any time density of kinks on a step is comparable with the reciprocal intermolecular distance, so that the step rate is about isotropic within the crystal plane. Such azimuthal isotropy is, however, often not the case: Kink density may be much lower. In particular, it was recently found on the (010) face of orthorhombic lysozyme that interkink distance may exceed 500-600 intermolecular distances. Under such conditions, Gibbs-Thomson law (GTL) may not be applicable: On a straight step segment between two corners, communication between the comers occurs exclusively by kink exchange. Annihilation between kinks of opposite sign generated at the comers results in the grain in step energy entering GTL. If the step segment length l much greater than D/v, where D and v are the kink diffusivity and propagation rate, respectively, the opposite kinks have practically no chance to annihilate and GTL is not applicable. The opposite condition of the GTL applicability, l much less than D/v, is equivalent to the requirement that relative supersaturation Delta(sub mu)/kT much less than alpha/l, where alpha is molecular size. Thus, GTL may be applied to a segment of 10(exp 3)alpha approx. 3 x 10(exp -5)cm approx 0.3 micron only if supersaturation is less than 0.1%, while practically used driving forces for crystallization are much larger. Relationships alternative to the GTL for different, but low, kink density have been discussed. They confirm experimental evidences that the Burton-Cabrera-Frank theory of spiral growth is growth rates twice as low as compared to the observed figures. Also, application of GTL results in unrealistic step energy while suggested kinetic law give reasonable figures.
Document ID
20030068125
Document Type
Preprint (Draft being sent to journal)
Authors
Chernov, A. A. (BAE Systems Huntsville, AL, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2003
Subject Category
Inorganic, Organic and Physical Chemistry
Funding Number(s)
CONTRACT_GRANT: NAS8-02096
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.