NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Derivation of Aerosol Columnar Mass from MODIS Optical DepthIn order to verify performance, aerosol transport models (ATM) compare aerosol columnar mass (ACM) with those derived from satellite measurements. The comparison is inherently indirect since satellites derive optical depths and they use a proportionality constant to derive the ACM. Analogously, ATMs output a four dimensional ACM distribution and the optical depth is linearly derived. In both cases, the proportionality constant requires a direct intervention of the user by prescribing the aerosol composition and size distribution. This study introduces a method that minimizes the direct user intervention by making use of the new aerosol products of MODIS. A parameterization is introduced for the derivation of columnar aerosol mass (AMC) and CCN concentration (CCNC) and comparisons between sunphotometer, MODIS Airborne Simulator (MAS) and in-measurements are shown. The method still relies on the scaling between AMC and optical depth but the proportionality constant is dependent on the MODIS derived r$_{eff}$,\eta (contribution of the accumulation mode radiance to the total radiance), ambient RH and an assumed constant aerosol composition. The CCNC is derived fkom a recent parameterization of CCNC as a function of the retrieved aerosol volume. By comparing with in-situ data (ACE-2 and TARFOX campaigns), it is shown that retrievals in dry ambient conditions (dust) are improved when using a proportionality constant dependent on r$ {eff}$ and \eta derived in the same pixel. In high humidity environments, the improvement inthe new method is inconclusive because of the difficulty in accounting for the uneven vertical distribution of relative humidity. Additionally, two detailed comparisons of AMC and CCNC retrieved by the MAS algorithm and the new method are shown. The new method and MAS retrievals of AMC are within the same order of magnitude with respect to the in-situ measurements of aerosol mass. However, the proposed method is closer to the in-situ measurements than the MODIS retrievals. The retrievals of CCNC are also within the same order of magnitude for both methods. The new method is applied to an actual MODIS retrieval and although no in-situ data is available to compare, it is shown that the proposed method yields more credible values than the MODIS retrievals. In addition, recent data available from the PRIDE (Puerto Rico Dust Experiment, July 2000) will be shown by comparing sunphotometer, MODIS and in-situ data.
Document ID
20030112960
Document Type
Conference Paper
Authors
Gasso, Santiago (Maryland Univ. Baltimore County Catonsville, MD, United States)
Hegg, Dean A. (Washington Univ. Seattle, WA, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2003
Subject Category
Meteorology and Climatology
Meeting Information
American Geophysical Union Fall Meeting(San Francisco, CA)
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.