NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Crystallization Physics in Biomacromolecular SystemsThe crystals are built of molecules of protein, nucleic acid and their complexes, like viruses, approx. 5x10(exp 3)+ 3x10(exp 6) Da in weight and 2 + 20 nm in effective diameter. This size strongly exceeds action range of molecular forces and makes a big difference with inorganic crystals. Intermolecular contacts form patches on the biomacromolecular surface. Each patch may occupy only a small percent of the whole surface and vary from polymorph to polymorph of the same protein. Thus, under different conditions (pH, solution chemistry, temperature, any area on the macromolecular surface may form a contact. The crystal Young moduli, E approx. equals 0.1 + 0.5 GPa are more than 10 times lower than that of inorganics and the biomolecules themselves. Water within biocrystals (30-70%) is unable to flow unless typical deformation time is longer than approx. 10(exp -5)s. This explains the discrepancy between light scattering and static measurements of E. Nucleation and Growth requires typically concentrations exceeding the equilibrium ones up to 100 times - because of the new size scale results in 10 - 10(exp 3) times lower kinetic coefficients than that needed for inorganic solution growth. All phenomena observed in the latter occur with protein crystallization and are even better studied by AFM. Crystals are typically facetted. Among unexpected findings of general significance are - net molecular exchange flux at kinks is much lower than that expected from supersaturation, steps with low (< approx. 10(exp -2)) kink density at steps follow Gibbs-Thomson law only at very low supersaturations, step segment growth rate may be independent of step energy. Crystal perfection is a must of biocrystallization to achieve the major goal to find 3-D atomic structure of biomacromolecules by x-ray diffraction. Poor diffraction resolution (> 3Angstrom) makes crystallization a bottleneck for structural biology. All defects typical of small molecule crystals are found in biocrystals, but the defects responsible for poor resolution are not identified. Conformational changes are one of them. Biocrystallization in microgravity reportedly results in 20% cases of better crystals. The mechanism of how lack of convection can do this is still not clear. Lower supersaturation, self-purification &om preferentially trapped homologous impurities and step bunching are viable hypotheses.
Document ID
20040000684
Acquisition Source
Marshall Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Chernov, A. A.
(BAE Systems Huntsville, AL, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2003
Subject Category
Atomic And Molecular Physics
Meeting Information
Meeting: International Summer School on Crystal Growth (ISSCG-12)
Location: Berlin
Country: Germany
Start Date: August 1, 2003
End Date: August 7, 2003
Funding Number(s)
CONTRACT_GRANT: NAS8-02096
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available