NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A Downscaling Analysis of the Urban Influence on Rainfall: TRMM Satellite Component AMS Conference on Satellite Meteorology and OceanographyA recent publication by Shepherd et al. (2002) demonstrated the feasibility of using TRMM precipitation radar (PR) estimates to identify precipitation anomalies caused by urbanization. The approach is particularly useful for investigating this global process because TRMM data span large portions of the globe and comprise an extended temporal dataset. Recent literature suggests that urbanized regions of Houston, Texas may be influencing lightning and precipitation formation over and downwind of the city. Possible mechanisms include: (1) enhanced convergence through interactions between the sea breeze, Galveston bay breeze, and urban heat island circulations, (2) enhanced convergence due to increased surface roughness over the city and/or destabilization of the boundary layer by the UHI, or (3) enhanced cloud condensation nuclei due to urban and industrial aerosol sources. In this study, a downscaling analysis of spatial and temporal trends in rainfall around the Houston Area is being conducted. The downscaling analysis concept involves identifying and quantifying urban rainfall anomalies at progressively smaller spatial and temporal scales using the TRMM satellite, ground-based radar, and a dense network of rain gauges. The goal is to test the hypothesis that the Houston urban district and regions in the climatological downwind region of the city exhibit enhanced rainfall amounts relative to the climatological upwind regions. TRMM was launched in 1997 and currently operates in a low-inclination (35 deg), non-sun-synchronous orbit at an altitude of 402 km (350 km prior to August 2001). The satellite analysis follows the methodologies described in Shepherd et al. (2002). Nearly five years of TRMM PR-derived mean monthly rainfall estimates are utilized to produce annual and warm season isohyetal analyses around Houston. Early results indicate that rainfall rates (mm/h) for the entire period are largest within 100 km northeast and east of Houston (e.g. the "hypothesized downwind region"). The mean rainfall rate over the Houston urban center is 30.5% larger than the upwind control region. The mean rainfall rate in the downwind region is 34.4% larger than the upwind region. An analysis of a parameter called the urban rainfall ratio (URR) illustrates that 65% (88%) of the satellite-derived rainfall rates in the downwind (upwind control) region are greater (less) than the mean background rainfall rate of the entire study region. When the data is stratified by summer months from 1998 to 2001 (June-August), even greater influence over and downwind of the urban area is observed in the statistics. This result is consistent with published reports of urban-generated rainfall being more prevalent in the warm season. The research demonstrates that the evolving TRMM satellite climatology is a credible way to detect mesoscale precipitation signatures that may be linked to urbanization. Early results also corroborate recent findings on Houston-induced convection/drainfall anomalies. Burian and Shepherd will report on other aspects of the downscaling analysis in future forums, but early rain gauge results are consistent with the satellite-based observations.
Document ID
20040012859
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Shepherd, J. Marshall
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Burian, Steven J.
(Arkansas Univ.)
Date Acquired
August 21, 2013
Publication Date
January 1, 2002
Subject Category
Meteorology And Climatology
Meeting Information
Meeting: AMS Conference on Satellite Meteorology and Oceanography
Location: Long Beach, CA
Country: United States
Start Date: February 9, 2003
End Date: February 13, 2003
Sponsors: American Meteorological Society
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available