NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Sensitivity Studies for Space-based Measurements of Atmospheric Total Column Carbon Dioxide Using Reflected SunlightA series of sensitivity studies is carried out to explore the feasibility of space-based global carbon dioxide (CO2) measurements for global and regional carbon cycle studies. The detection method uses absorption of reflected sunlight in the CO2 vibration-rotation band at 1.58 micron. The sensitivities of the detected radiances are calculated using the line-by-line model (LBLRTM), implemented with the DISORT (Discrete Ordinates Radiative Transfer) model to include atmospheric scattering in this band. The results indicate that (a) the small (approx.1%) changes in CO2 near the Earth's surface are detectable in this CO2 band provided adequate sensor signal-to-noise ratio and spectral resolution are achievable; (b) the effects of other interfering constituents, such as water vapor, aerosols and cirrus clouds, on the radiance are significant but the overall effects of the modification of light path length on total back-to-space radiance sensitivity to CO2 change are minor for general cases, which means that generally the total column CO2 can be derived in high precision from the ratio of the on-line center to off-line radiances; (c) together with CO2 gas absorption aerosol/cirrus cloud layer has differential scattering which may result in the modification of on-line to off-line radiance ratio which could lead a large bias in the total column CO2 retrieval. Approaches to correct such bias need further investigation. (d) CO2 retrieval requires good knowledge of the atmospheric temperature profile, e.g. approximately 1K RMS error in layer temperature, which is achievable from new atmospheric sounders in the near future; (e) the atmospheric path length, over which the CO2 absorption occurs, should be known in order to correctly interpret horizontal gradients of CO2 from the total column CO2 measurement; thus an additional sensor for surface pressure measurement needs to be attached for a complete measurement package.
Document ID
20040016382
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Mao, Jianping
(Science Systems and Applications, Inc. Lanham, MD, United States)
Kawa, S. Randolph
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2003
Subject Category
Meteorology And Climatology
Meeting Information
Meeting: SPIE International Symposium on Remote Sensing
Location: Barcelona
Country: Spain
Start Date: September 8, 2003
End Date: September 12, 2003
Sponsors: International Society for Optical Engineering
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available