NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source RegionDuring the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic matter, and dust found for the ACE Asia aerosol are comparable to values estimated for ACE 1, Aerosols99, and INDOEX. Unique to the ACE Asia aerosol was the large mass fractions of dust, the dominance of dust in controlling the aerosol optical properties, and the interaction of dust with soot aerosol.
Document ID
20040030483
Acquisition Source
Headquarters
Document Type
Preprint (Draft being sent to journal)
Authors
Quinn, P. K.
Coffman, D. J.
Bates, T. S.
Welton, E. J.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Covert, D. S.
Miller, T. L.
Johnson, J. E.
Maria, S.
Russell, L.
Arimoto, R.
Date Acquired
August 21, 2013
Publication Date
January 1, 2004
Subject Category
Meteorology And Climatology
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
Document Inquiry

Available Downloads

There are no available downloads for this record.
No Preview Available