NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Insights into the Processing of Carbon by Early Microbial EcosystemsInteractions between Earth and the biosphere that were crucial for early biological evolution also influenced substantially the processes that circulate C between its reservoirs in the atmosphere, ocean, crust and mantle. The C-13 C-12 values of crustal carbonates and organics have recorded changes both in biological discrimination and in the relative rates of burial of organics and carbonates. A full interpretation of these patterns needs further isotopic studies of microbial ecosystems and individual anaerobes. Thus we measured carbon isotope discrimination during autotrophic and heterotrophic growth of pure cultures of sulfate-reducing bacteria and archaea (SRB and SRA). Discrimination during CO2 assimilation is significantly larger than during heterotrophic growth on lactate or acetate. SRB grown lithoautotrophically consumed less than 3% of available CO2 and exhibited substantial discrimination, as follows: Desulfobacterium autotrophicum (alpha 1.0100 to 1.0123), Desulfobacter hydrogenophilus (alpha = 0.0138), and Desulfotomuculum acetoxidans (alpha = 1.0310). Mixotrophic growth of Desulfovibrio desulfuricans on acetate and CO2 resulted in biomass with delta C-13 composition intermediate to that of the substrates. We have recently extended these experiments to include the thermophilic SRA Archeoglobus spp. Ecological forces also influence isotopic discrimination. Accordingly, we quantified the flow of C and other constituents in modern marine cyanobacterial mats, whose ancestry extends back billions of years. Such ecosystem processes shaped the biosignatures that entered sediments and atmospheres. At Guerrero Negro, BCS, Mexico, we examined mats dominated by Microcoleus (subtidal) and Lyngbya (intertidal to supratidal) cyanobacteria. During 24 hour cycles, we observed the exchange of O2 and dissolved inorganic C (DIC) between mats and the overlying water. Microcoleus mats assimilated near-equal amounts of DIC during the day as they released at night, but Lyngbya mats typically showed net uptake of DIC over the diel cycle. Patterns of O2 daytime release and nighttime uptake mirrored these DIC trends in both mat types. Nighttime DIC effluxes from Microcoleus mats were equivalent in the presence versus absence of O2, whereas nighttime DIC effluxes from Lyngbya mats dropped markedly in the absence of O2. Thus aerobic diagenesis was more important in Lyngbya mats than in Microcoleus mats, perhaps because trapped O2 bubbles persist only in Lyngbya mats at night and thus sustain populations of aerbes. In both mat types, effluxes of H2, CH4 and short-chain fatty acids were much greater at night in the absence of 02, emphasizing the importance of fermentation. Differences observed between Microcoleus versus Lyngbya mats forecast differences in their microbial populations and in their patterns of gene expression.
Document ID
20040081089
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
DesMarais, D.
(NASA Ames Research Center Moffett Field, CA, United States)
Bebout, B.
(NASA Ames Research Center Moffett Field, CA, United States)
Carpenter, S.
(NASA Ames Research Center Moffett Field, CA, United States)
Discipulo, S.
(NASA Ames Research Center Moffett Field, CA, United States)
Londry, K.
(NASA Ames Research Center Moffett Field, CA, United States)
Habicht, K.
(NASA Ames Research Center Moffett Field, CA, United States)
Turk, K.
(NASA Ames Research Center Moffett Field, CA, United States)
Date Acquired
August 21, 2013
Publication Date
August 6, 2003
Subject Category
Life Sciences (General)
Meeting Information
Meeting: Exobiology P.I. Symposium
Location: Toronto
Country: Canada
Start Date: August 25, 2003
End Date: August 29, 2003
Funding Number(s)
PROJECT: RTOP 344-50-92-02
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available