NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Records of our Early Biosphere Illuminate our Origins and Guide our Search for Life Beyond EarthA scientific "mission of exploration to early Earth" will help us chart the distribution of life elsewhere. We must discriminate between attributes of biospheres that are universal versus those attributes that represent principally the outcomes of long-term survival specifically on Earth. In addition to the basic physics and chemistry of matter, the geologic evolution of rocky habitable planets and their climates might be similar elsewhere in the Universe. Certain key agents that drive long-term environmental change (e.g., stellar evolution, impacts, geothermal heat flow, tectonics, etc.) can help us to reconstruct ancient climates and to compare their evolution among populations of Earth- like planets. Early Earth was tectonically more active than today and therefore it exhaled reduced chemical species into the more oxidized surface environment at greater rates. This tectonic activity thus sustained oxidation-reduction reactions that provided the basis for the development of biochemical pathways that harvest chemical energy ("bioenergetics"). Most examples of bioenergetics today that extract energy by reacting oxidized and reduced chemicals in the environment were likely more pervasive among our microbial ancestors than are the presently known examples of photosynthesis. The geologic rock record indicates that, as early as 3.5 billion years ago (3.5 Ga), microbial biofilms were widespread within the coastal environments of small continents and tectonically unstable volcanic islands. Non oxygen-producing (non-oxygenic) photosynthesis preceded oxygenic photosynthesis, but all types of photosynthesis contributed substantially to the long-term increase in global primary biological productivity. Evidence of photosynthesis is tentative by 3.5 Ga and compelling by 2.7 Ga. Evidence of oxygenic photosynthesis is strong by 2.7 Ga and compelling by 2.3 Ga. These successive innovations transformed life from local communities that survived principally by catalyzing chemical equilibration to a globally dominant agent that created and sustained widespread chemical disequilibria in the environment and shallow crust. Major biogeochemical perturbations ca. 2.3 to 2.0 Ga, 1.3 Ga, and also 0.8 to 0.6 Ga, contributed to the irreversible oxidation of the global environment and perhaps also triggered evolutionary innovations (e.g., the development of multi-cellular biota) that became the foundations of our modern biosphere. Understanding the nature and timing of this ascent of life is crucial for discerning our o m beginnings. This understanding also empowers OUT search for the origins, evolution and distribution of life elsewhere in our solar system and beyond.
Document ID
20040081095
Acquisition Source
Ames Research Center
Document Type
Conference Paper
Authors
DesMarais, David J.
(NASA Ames Research Center Moffett Field, CA, United States)
Date Acquired
August 21, 2013
Publication Date
August 23, 2003
Subject Category
Life Sciences (General)
Meeting Information
Meeting: AGU Conference
Location: San Francisco, CA
Country: United States
Start Date: December 1, 2003
Sponsors: American Geophysical Union
Funding Number(s)
PROJECT: RTOP 344-53-92-00
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available