NASA Logo, External Link
Facebook icon, External Link to NASA STI page on Facebook Twitter icon, External Link to NASA STI on Twitter YouTube icon, External Link to NASA STI Channel on YouTube RSS icon, External Link to New NASA STI RSS Feed AddThis share icon
 

Record Details

Record 12 of 2057
The Impact of Model Configuration and Large-Scale, Upper-Level Forcing on CRM- Simulated Convective Systems
Author and Affiliation:
Tao, W.-K.(NASA Goddard Space Flight Center, Greenbelt, MD, United States)
Zeng, X.(NASA Goddard Space Flight Center, Greenbelt, MD, United States)
Shie, C.-L.(NASA Goddard Space Flight Center, Greenbelt, MD, United States)
Starr, D.(NASA Goddard Space Flight Center, Greenbelt, MD, United States)
Simpson, J.(NASA Goddard Space Flight Center, Greenbelt, MD, United States)
Abstract: Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D, see a brief review by Tao 2003). Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research, at NOAA GFDL, at the U. K. Met. Office, at Colorado State University and at NASA Goddard Space Flight Center (Tao 2003). At Goddard, a 3D Goddard Cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE (December 19-27, 1992), GATE (September 1-7, 1974), SCSMEX (June 2-11, 1998), ARM (June 26-30, 1997) and KWAJEX (August 7-13, August 18-21, and August 29-September 12, 1999) using a 512 by 512 km domain (with 2-km resolution). The results indicate that surface precipitation and latent heating profiles are similar between the 2D and 3D GCE model simulations. However, there are difference in radiation, surface fluxes and precipitation characteristics. The 2D GCE model was used to perform a long-term integration on ARM/GCSS case 4 (22 days at the ARM Southern Great Plains site in March 2000). Preliminary results showed a large temperature bias in the upper troposphere that had not been seen in previous tropical cases. The major objectives of this paper are: (1) to determine the sensitivities to model configuration (i.e., 2D in west-east, south-north or 3D), (2) to identify the differences and similarities in the organization and entrainment rates of convection between 2D- and 3D-simulated ARM cloud systems, and (3) assess the impact of upper tropospheric forcing on tropical and ARM case 4 cases.
Publication Date: Jan 01, 2004
Document ID:
20040081226
(Acquired Jul 14, 2004)
Subject Category: METEOROLOGY AND CLIMATOLOGY
Document Type: Preprint
Meeting Information: ARM Science Meeting; 22-26 Mar. 2004; Albuquerque, NM; United States
Financial Sponsor: NASA Goddard Space Flight Center; Greenbelt, MD, United States
Organization Source: NASA Goddard Space Flight Center; Greenbelt, MD, United States
Description: 1p; In English
Distribution Limits: Unclassified; Publicly available; Unlimited
Rights: No Copyright
NASA Terms: CUMULUS CLOUDS; THREE DIMENSIONAL MODELS; ATMOSPHERIC MODELS; ATMOSPHERIC TEMPERATURE; HEATING; TROPOSPHERE
Availability Source: Other Sources
Availability Notes: Abstract Only
› Back to Top
Find Similar Records
NASA Logo, External Link
NASA Official: Gerald Steeman
Site Curator: STI Program
Last Modified: August 23, 2011
Contact Us