NASA Logo, External Link
Facebook icon, External Link to NASA STI page on Facebook Twitter icon, External Link to NASA STI on Twitter YouTube icon, External Link to NASA STI Channel on YouTube RSS icon, External Link to New NASA STI RSS Feed AddThis share icon
 

Record Details

Record 33 of 57069
The Development of Two Science Investigator-led Processing Systems (SIPS) for NASA's Earth Observation System (EOS)
Author and Affiliation:
Tilmes, Curt(NASA Goddard Space Flight Center, Greenbelt, MD, United States)
Abstract: In 2001, NASA Goddard Space Flight Center's Laboratory for Terrestrial Physics started the construction of a science Investigator-led Processing System (SIPS) for processing data from the Ozone Monitoring Instrument (OMI) which will launch on the Aura platform in mid 2004. The Ozone Monitoring Instrument (OMI) is a contribution of the Netherlands Agency for Aerospace Programs (NIVR) in collaboration with the Finnish Meteorological Institute (FMI) to the Earth Observing System (EOS) Aura mission. It will continue the Total Ozone Monitoring System (TOMS) record for total ozone and other atmospheric parameters related to ozone chemistry and climate. OMI measurements will be highly synergistic with the other instruments on the EOS Aura platform. The LTP previously developed the Moderate Resolution Imaging Spectrometer (MODIS) Data Processing System (MODAPS), which has been in full operations since the launches of the Terra and Aqua spacecrafts in December, 1999 and May, 2002 respectively. During that time, it has continually evolved to better support the needs of the MODIS team. We now run multiple instances of the system managing faster than real time reprocessings of the data as well as continuing forward processing. The new OMI Data Processing System (OMIDAPS) was adapted from the MODAPS. It will ingest raw data from the satellite ground station and process it to produce calibrated, geolocated higher level data products. These data products will be transmitted to the Goddard Distributed Active Archive Center (GDAAC) instance of the Earth Observing System (EOS) Data and Information System (EOSDIS) for long term archive and distribution to the public. The OMIDAPS will also provide data distribution to the OMI Science Team for quality assessment, algorithm improvement, calibration, etc. We have taken advantage of lessons learned from the MODIS experience and software already developed for MODIS. We made some changes in the hardware system organization, database and software to adapt the system for OMI. We replaced the fundamental database system, Sybase, with an Open Source RDBMS called PostgreSQL, and based the entire OMIDAPS on a cluster of Linux based commodity computers rather than the large SGI servers that MODAPS uses. Rather than relying on a central I/O server host, the new system distributes its data archive among multiple server hosts in the cluster. OMI is also customizing the graphical user interfaces and reporting structure to more closely meet the needs of the OMI Science Team. Prior to 2003, simulated OMI data and the science algorithms were not ready for production testing. We initially constructed a prototype system and tested using a 25 year dataset of Total Ozone Mapping Spectrometer (TOMS) and Solar Backscatter Ultraviolet Instrument (SBUV) data. This prototype system provided a platform to support the adaptation of the algorithms for OMI, and provided reprocessing of the historical data aiding in its analysis. In a recent reanalysis of the TOMS data, the OMIDAPS processed 108,000 full orbits of data through 4 processing steps per orbit, producing about 800,000 files (400 GiB) of level 2 and greater data files. More recently we have installed two instances of the OMIDAPS for integration and testing of OM1 science processes as they get delivered from the Science Team. A Test instance of the OMIDAPS has also supported a series of "Interface Confidence Tests" (ICTs) and End-to-End Ground System tests to ensure the launch readiness of the system. This paper will discuss the high-level hardware, software, and database organization of the OMIDAPS and how it builds on the MODAPS heritage system. It will also provide an overview of the testing and implementation of the production OMIDAPS.
Publication Date: Jan 01, 2004
Document ID:
20040081264
(Acquired Jul 15, 2004)
Subject Category: COMPUTER PROGRAMMING AND SOFTWARE
Document Type: Preprint
Meeting Information: IEEE International Geoscience and Remote Sensing Symposium 2004; 20-24 Sep. 2004; Anchorage, AK; United States
Meeting Sponsor: Institute of Electrical and Electronics Engineers; United States
Financial Sponsor: NASA Goddard Space Flight Center; Greenbelt, MD, United States
Organization Source: NASA Goddard Space Flight Center; Greenbelt, MD, United States
Description: 1p; In English
Distribution Limits: Unclassified; Publicly available; Unlimited
Rights: No Copyright
NASA Terms: EARTH OBSERVING SYSTEM (EOS); EOS DATA AND INFORMATION SYSTEM; FUNCTIONAL DESIGN SPECIFICATIONS; OZONE; IMAGING SPECTROMETERS; QUALITY CONTROL; REAL TIME OPERATION; COMPUTER PROGRAMS
Availability Source: Other Sources
Availability Notes: Abstract Only
› Back to Top
Find Similar Records
NASA Logo, External Link
NASA Official: Gerald Steeman
Site Curator: STI Program
Last Modified: August 23, 2011
Contact Us