NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Life in the Fast Lane for Protein Crystallization and X-Ray CrystallographyThe common goal for structural genomic centers and consortiums is to decipher as quickly as possible the three-dimensional structures for a multitude of recombinant proteins derived from known genomic sequences. Since X-ray crystallography is the foremost method to acquire atomic resolution for macromolecules, the limiting step is obtaining protein crystals that can be useful of structure determination. High-throughput methods have been developed in recent years to clone, express, purify, crystallize and determine the three-dimensional structure of a protein gene product rapidly using automated devices, commercialized kits and consolidated protocols. However, the average number of protein structures obtained for most structural genomic groups has been very low compared to the total number of proteins purified. As more entire genomic sequences are obtained for different organisms from the three kingdoms of life, only the proteins that can be crystallized and whose structures can be obtained easily are studied. Consequently, an astonishing number of genomic proteins remain unexamined. In the era of high-throughput processes, traditional methods in molecular biology, protein chemistry and crystallization are eclipsed by automation and pipeline practices. The necessity for high rate production of protein crystals and structures has prevented the usage of more intellectual strategies and creative approaches in experimental executions. Fundamental principles and personal experiences in protein chemistry and crystallization are minimally exploited only to obtain "low-hanging fruit" protein structures. We review the practical aspects of today s high-throughput manipulations and discuss the challenges in fast pace protein crystallization and tools for crystallography. Structural genomic pipelines can be improved with information gained from low-throughput tactics that may help us reach the higher-bearing fruits. Examples of recent developments in this area are reported from the efforts of the Southeast Collaboratory for Structural Genomics (SECSG).
Document ID
20040085947
Acquisition Source
Marshall Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Pusey, Marc L.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Liu, Zhi-Jie
(Georgia Univ. Athens, GA, United States)
Tempel, Wolfram
(Georgia Univ. Athens, GA, United States)
Praissman, Jeremy
(Georgia Univ. Athens, GA, United States)
Lin, Dawei
(Georgia Univ. Athens, GA, United States)
Wang, Bi-Cheng
(Georgia Univ. Athens, GA, United States)
Gavira, Jose A.
(Alabama Univ. Huntsville, AL, United States)
Ng, Joseph D.
(Alabama Univ. Huntsville, AL, United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 2004
Subject Category
Exobiology
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available