NASA Logo, External Link
Facebook icon, External Link to NASA STI page on Facebook Twitter icon, External Link to NASA STI on Twitter YouTube icon, External Link to NASA STI Channel on YouTube RSS icon, External Link to New NASA STI RSS Feed AddThis share icon

Record Details

Record 58 of 17342
Main-Sequence CMEs as Magnetic Explosions: Compatibility with Observed Kinematics
Author and Affiliation:
Moore, Ron(NASA Marshall Space Flight Center, Huntsville, AL, United States)
Falconer, David(NASA Marshall Space Flight Center, Huntsville, AL, United States)
Sterling, Alphonse(NASA Marshall Space Flight Center, Huntsville, AL, United States)
Abstract: We examine the kinematics of 26 CMEs of the morphological main sequence of CMEs, those having the classic three-part bubble structure of (1) a bright front eveloping (2) a dark cavity within which rides (3) a bright blob/filamentary feature. Each CME is observed in Yohkoh/SXT images to originate from near the limb (> or equal to 0.7 R(sub Sun) from disk center). The basic data (from the SOHO LASCO CME Catalog) for the kinematics of each CME are the sequence of LASCO images of the CME, the time of each image, the measured radial distance of the front edge of the CME in each image, and the measured angular extent of the CME. About half of our CMEs (12) occur with a flare, and the rest (14) occur without a flare. While the average linear-fit speed of the flare CMEs (1000 km/s) is twice that of the non-flare CMEs (510 km/s), the flare CMEs and the non-flare CMEs are similar in that some have nearly flat velocity-height (radial extent) profiles (little acceleration), some have noticeably falling velocity profiles (noticeable deceleration), and the rest have velocity profiles that rise considerably through the outer corona (blatant acceleration). This suggests that in addition to sharing similar morphology, main-sequence CMEs all have basically the same driving mechanism. The observed radial progression of each of our 26 CMEs is fit by a simple model magnetic plasmoid that is in pressure balance with the radial magnetic field in the outer corona and that propels itself outward by magnetic expansion, doing no net work on its surroundings. On average over the 26 CMEs, this model fits the observations as well as the assumption of constant acceleration. This is compatible with main-sequence CMEs being magnetically driven, basically magnetic explosions, with the velocity profile in the outer corona being largely dictated by the initial Alfien speed in the CME (when the front is at approx. 3 (sub Sun), analogous to the mass of a main-sequence star dictating the luminosity.
Publication Date: Jan 01, 2004
Document ID:
(Acquired Aug 26, 2004)
Subject Category: SOLAR PHYSICS
Document Type: Preprint
Meeting Information: 2004 Shine Workshop; 26 Jun. - 2 Jul. 2004; Big Sky, MT; United States
Financial Sponsor: NASA Marshall Space Flight Center; Huntsville, AL, United States
Organization Source: NASA Marshall Space Flight Center; Huntsville, AL, United States
Description: 1p; In English
Distribution Limits: Unclassified; Publicly available; Unlimited
Rights: No Copyright
Availability Source: Other Sources
Availability Notes: Abstract Only
› Back to Top
Find Similar Records
NASA Logo, External Link
NASA Official: Gerald Steeman
Site Curator: STI Program
Last Modified: August 23, 2011
Contact Us