NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathyBACKGROUND: Myocardial regeneration via stem-cell mobilisation at the time of myocardial infarction is known to occur, although the mechanism for stem-cell homing to infarcted tissue subsequently and whether this approach can be used for treatment of ischaemic cardiomyopathy are unknown. We investigated these issues in a Lewis rat model (ligation of the left anterior descending artery) of ischaemic cardiomyopathy. METHODS: We studied the effects of stem-cell mobilisation by use of granulocyte colony-stimulating factor (filgrastim) with or without transplantation of syngeneic cells. Shortening fraction and myocardial strain by tissue doppler imaging were quantified by echocardiography. FINDINGS: Stem-cell mobilisation with filgrastim alone did not lead to engraftment of bone-marrow-derived cells. Stromal-cell-derived factor 1 (SDF-1), required for stem-cell homing to bone marrow, was upregulated immediately after myocardial infarction and downregulated within 7 days. 8 weeks after myocardial infarction, transplantation into the peri-infarct zone of syngeneic cardiac fibroblasts stably transfected to express SDF-1 induced homing of CD117-positive stem cells to injured myocardium after filgrastim administration (control vs SDF-1-expressing cardiac fibroblasts mean 7.2 [SD 3.4] vs 33.2 [6.0] cells/mm2, n=4 per group, p<0.02) resulting in greater left-ventricular mass (1.24 [0.29] vs 1.57 [0.27] g) and better cardiac function (shortening fraction 9.2 [4.9] vs 17.2 [4.2]%, n=8 per group, p<0.05). INTERPRETATION: These findings show that SDF-1 is sufficient to induce therapeutic stem-cell homing to injured myocardium and suggest a strategy for directed stem-cell engraftment into injured tissues. Our findings also indicate that therapeutic strategies focused on stem-cell mobilisation for regeneration of myocardial tissue must be initiated within days of myocardial infarction unless signalling for stem-cell homing is re-established.
Document ID
20040087545
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Askari, Arman T.
(Cleveland Clinic Foundation Cleveland, OH 44195, United States)
Unzek, Samuel
Popovic, Zoran B.
Goldman, Corey K.
Forudi, Farhad
Kiedrowski, Matthew
Rovner, Aleksandr
Ellis, Stephen G.
Thomas, James D.
DiCorleto, Paul E.
Topol, Eric J.
Penn, Marc S.
Date Acquired
August 21, 2013
Publication Date
August 30, 2003
Publication Information
Publication: Lancet
Volume: 362
Issue: 9385
ISSN: 0140-6736
Subject Category
Life Sciences (General)
Distribution Limits
Public
Copyright
Other
Keywords
NASA Discipline Cardiopulmonary
Non-NASA Center

Available Downloads

There are no available downloads for this record.
No Preview Available