NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Individual thermal profiles as a basis for comfort improvement in space and other environmentsBACKGROUND: The development of individualized countermeasures to address problems in thermoregulation is of considerable importance for humans in space and other extreme environments. A methodology is presented for evaluating minimal/maximal heat flux from the total human body and specific body zones, and for assessing individual differences in the efficiency of heat exchange from these body areas. The goal is to apply this information to the design of individualized protective equipment. METHODS: A multi-compartment conductive plastic tubing liquid cooling/warming garment (LCWG) was developed. Inlet water temperatures of 8-45 degrees C were imposed sequentially to specific body areas while the remainder of the garment was maintained at 33 degrees C. RESULTS: There were significant differences in heat exchange level among body zones in both the 8 degrees and 45 degrees C temperature conditions (p < 0.001). The greatest amount of heat was absorbed/released by the following areas: thighs (8 degrees C: -2.12 +/- 0.14 kcal min(-1); 45 degrees C: +1.58 +/- 0.23); torso (8 degrees C: -2.12 +/- 0.13 kcal min(-1); 45 degrees C: +1.31 +/- 0.27); calves (8 degrees C: -1.59 +/- 0.26 kcal min(-1); 45 degrees C: +1.53 +/- 0.24); and forearms (8 degrees C: -1.67 +/- 0.29 kcal x min(-1); 45 degrees C: +1.45 +/- 0.20). These are primarily zones with relatively large muscle mass and adipose tissue. Calculation of absorption/release heat rates standardized per unit tube length and flow rate instead of zonal surface area covered showed that there was significantly greater heat transfer in the head, hands, and feet (p < 0.001). The areas in which there was considerable between-subject variability in rates of heat transfer and thus most informative for individual profile design were the torso, thighs, shoulders, and calves or forearms. CONCLUSIONS: The methodology developed is sensitive to individual differences in the process of heat exchange and variations in different body areas, depending on their size and tissue mass content. The design of individual thermal profiles is feasible for better comfort of astronauts on long-duration missions and personnel in other extreme environments.
Document ID
20040087920
Document Type
Reprint (Version printed in journal)
Authors
Koscheyev, V. S. (University of Minnesota Minneapolis, MN 55455, United States)
Coca, A.
Leon, G. R.
Dancisak, M. J.
Date Acquired
August 21, 2013
Publication Date
December 1, 2002
Publication Information
Publication: Aviation, space, and environmental medicine
Volume: 73
Issue: 12
ISSN: 0095-6562
Subject Category
Life Sciences (General)
Distribution Limits
Public
Copyright
Other
Keywords
NASA Discipline Life Sciences Technologies
Randomized Controlled Trial
Clinical Trial
Non-NASA Center