NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Early embryo development in Fucus distichus is auxin sensitiveAuxin and polar auxin transport have been implicated in controlling embryo development in land plants. The goal of these studies was to determine if auxin and auxin transport are also important during the earliest stages of development in embryos of the brown alga Fucus distichus. Indole-3-acetic acid (IAA) was identified in F. distichus embryos and mature tissues by gas chromatography-mass spectroscopy. F. distichus embryos accumulate [(3)H]IAA and an inhibitor of IAA efflux, naphthylphthalamic acid (NPA), elevates IAA accumulation, suggesting the presence of an auxin efflux protein complex similar to that found in land plants. F. distichus embryos normally develop with a single unbranched rhizoid, but growth on IAA leads to formation of multiple rhizoids and growth on NPA leads to formation of embryos with branched rhizoids, at concentrations that are active in auxin accumulation assays. The effects of IAA and NPA are complete before 6 h after fertilization (AF), which is before rhizoid germination and cell division. The maximal effects of IAA and NPA are between 3.5 and 5 h AF and 4 and 5.5 h AF, respectively. Although, the location of the planes of cell division was significantly altered in NPA- and IAA-treated embryos, these abnormal divisions occurred after abnormal rhizoid initiation and branching was observed. The results of this study suggest that auxin acts in the formation of apical basal patterns in F. distichus embryo development.
Document ID
20040088128
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Basu, Swati
(Wake Forest University Winston-Salem, North Carolina 27109-7325, United States)
Sun, Haiguo
Brian, Leigh
Quatrano, Ralph L.
Muday, Gloria K.
Date Acquired
August 21, 2013
Publication Date
September 1, 2002
Publication Information
Publication: Plant physiology
Volume: 130
Issue: 1
ISSN: 0032-0889
Subject Category
Life Sciences (General)
Distribution Limits
Public
Copyright
Other
Keywords
Non-NASA Center
NASA Discipline Plant Biology

Available Downloads

There are no available downloads for this record.
No Preview Available