NTRS - NASA Technical Reports Server

Back to Results
functional recovery of anterior semicircular canal afferents following hair cell regeneration in birdsStreptomycin sulfate (1.2 g/kg i.m.) was administered for 5 consecutive days to 5-7-day-old white Leghorn chicks; this causes damage to semicircular canal hair cells that ultimately regenerate to reform the sensory epithelium. During the recovery period, electrophysiological recordings were taken sequentially from anterior semicircular canal primary afferents using an indentation stimulus of the canal that has been shown to mimic rotational stimulation. Chicks were assigned to an early (14-18 days; n = 8), intermediate (28-34 days; n = 5), and late (38-58 days; n = 4) period based on days after treatment. Seven untreated chicks, 15-67 days old, provided control data. An absence of background and indent-induced discharge was the prominent feature of afferents in the early period: only "silent" afferents were encountered in 5/8 experiments. In several of these chicks, fascicles of afferent fibers were seen extending up to the epithelium that was void of hair cells, and intra- and extracellular biocytin labeling revealed afferent processes penetrating into the supporting cell layer of the crista. In 3/8 chicks 74 afferents could be characterized, and they significantly differed from controls (n = 130) by having a lower discharge rate and a negligible response to canal stimulation. In the intermediate period there was considerable variability in discharge properties of 121 afferents, but as a whole the number of "silent" fibers in the canal nerve diminished, the background rate increased, and a response to canal stimulation detected. Individually biocytin-labeled afferents had normal-appearing terminal specializations in the sensory epithelium by 28 days poststreptomycin. In the late period, afferents (n = 58) remained significantly different from controls in background discharge properties and response gain. The evidence suggests that a considerable amount of variability exists between chicks in the return of vestibular afferent function following ototoxic injury and that the secretory function of regenerating hair cells might become functional before their transducer function.
Document ID
Document Type
Reprint (Version printed in journal)
External Source(s)
Boyle, Richard
(NASA Ames Research Center Moffett Field CA United States)
Highstein, Stephen M.
Carey, John P.
Xu, Jinping
Date Acquired
August 21, 2013
Publication Date
June 1, 2002
Publication Information
Publication: Journal of the Association for Research in Otolaryngology : JARO
Volume: 3
Issue: 2
ISSN: 1525-3961
Subject Category
Life Sciences (General)
Funding Number(s)
Distribution Limits
NASA Discipline Neuroscience
Non-NASA Center