NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Glycine betaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supplyExposure of plants to sodium (Na) and salinity may increase glycine betaine accumulation in tissues. To study this, red-beet cvs. Scarlet Supreme and Ruby Queen, were grown for 42 days in a growth chamber using a re-circulating nutrient film technique with 0.25 mmol/L K and either 4.75 mmol/L (control) or 54.75 mmol/L (saline) Na (as NaCl). Plants were harvested at weekly intervals and measurements were taken on leaf water relations, leaf photosynthetic rates, chlorophyll fluorescence, chlorophyll levels, glycine betaine levels, and tissue elemental composition. Glycine betaine accumulation increased under salinity and this accumulation correlated with higher tissue levels of Na in both cultivars. Na accounted for 80 to 90% of the total cation uptake under the saline treatment. At final harvest (42 days), K concentrations in laminae ranged from approximately 65-95 micromoles g-1 dry matter (DM), whereas Na in shoot tissue ranged from approximately 3000-4000 micromoles g-1. Leaf sap osmotic potential at full turgor [psi(s100)] increased as lamina Na content increased. Glycine betaine levels of leaf laminae showed a linear relationship with leaf sap [psi(s100)]. Chlorophyll levels, leaf photosynthetic rates, and chlorophyll fluorescence were not affected by Na levels. These results suggest that the metabolic tolerance to high levels of tissue Na in red-beet could be due to its ability to synthesize and regulate glycine betaine production, and to control partitioning of Na and glycine betaine between the vacuole and the cytoplasm.
Document ID
20040088293
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Subbarao, G. V.
(NASA Kennedy Space Center Cocoa Beach FL United States)
Wheeler, R. M.
Levine, L. H.
Stutte, G. W.
Sager, J. C.
Date Acquired
August 21, 2013
Publication Date
June 1, 2001
Publication Information
Publication: Journal of plant physiology
Volume: 158
Issue: 6
ISSN: 0176-1617
Subject Category
Life Sciences (General)
Distribution Limits
Public
Copyright
Other
Keywords
NASA Center KSC
NASA Discipline Life Support Systems

Available Downloads

There are no available downloads for this record.
No Preview Available