NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Geology and geochemistry of paleosols developed on the Hekpoort Basalt, Pretoria Group, South AfricaThe Hekpoort paleosols comprise a regional paleoweathering horizon developed on 2.224 +/- 0.021 Ga basaltic andesite lavas at the top of the Hekpoort Formation of the Pretoria Group, Transvaal Supergroup, South Africa. In five separate profiles, from outcrops along road cuts near Waterval Onder and the Daspoort Tunnel and in three drill cores from the Bank Break Area (BB3, BB8, and BB14), the top of the paleosol is a sericite-rich zone. The sericite zone grades downward into a chlorite-rich zone. In core BB8 and in the road cut at the Daspoort Tunnel, we sampled the underlying or parent basaltic andesite into which the chlorite zone grades. We did not obtain samples of the parent material at Waterval Onder and in cores BB3 and BB14, but chemical analyses indicate that the chlorite and sericite zones in these profiles derive from underlying lavas similar to the ones we sampled in core BB8 and at the Daspoort Tunnel. The presence of apparent rip-up clasts of the paleosol in the overlying ironstones of the Strubenkop Formation in the cores from Bank Break makes it very unlikely that most of the alteration was a result of interactions with hydrothermal fluids. Desiccation cracks at the top of the paleosol that were filled with sand during the deposition of the overlying sediments at Waterval Onder point to a subaerial weathering origin. Very little, if any, Al, Ti, Zr, V, or Cr moved a discernible distance during weathering of any of the five profiles. The vertical distribution of Fe, Mg, Mn, Ni, and Co indicates that these elements were largely removed from the top of the soil during weathering. The overall abundance of these elements in each of the profiles indicates that a significant fraction of the complement lost from the top subsequently reprecipitated in the lower portion of the soil as constituents of an Fe2(+) -rich smectite. The loss of Fe from the top of the soil during weathering of the Hekpoort paleosols indicates that atmospheric PO2 was less than 8 x 10(-4) atm about 2.22 Ga. Fe2(+) -rich smectite should only precipitate during soil formation if atmospheric PCO2 is less than or equal to 2 x 10(-2) atm (Rye, Kuo, and Holland, 1995). Ca and Na were largely lost during weathering. Some Na was apparently added to the sericite zone in cores BB3, BB8, and BB14 after weathering. All five profiles are enriched in K and Rb, and most are enriched in Ba. The distribution of these elements indicates that they all were added during post-weathering hydrothermal metasomatism. Rb-Sr analysis of the paleosol at the Daspoort Tunnel indicates that metasomatism last affected that profile 1.925 +/- 0.032 Ga (Macfarlane and Holland, 1991).
Document ID
20040088832
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
Authors
Rye, R.
(Harvard University Cambridge, Massachusetts 02138, United States)
Holland, H. D.
Date Acquired
August 21, 2013
Publication Date
February 1, 2000
Publication Information
Publication: American journal of science
Volume: 300
Issue: 2
ISSN: 0002-9599
Subject Category
Geosciences (General)
Funding Number(s)
CONTRACT_GRANT: NAGW-599
CONTRACT_GRANT: NAG5-4174
Distribution Limits
Public
Copyright
Other
Keywords
Non-NASA Center
NASA Discipline Exobiology

Available Downloads

There are no available downloads for this record.
No Preview Available