NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Relative rates for plasma homo- and copolymerizations of olefins in a homologous series of fluorinated ethylenesIt is well known that the rate of plasma polymerization, or deposition rate, of a given monomer depends on various plasma process parameters, e.g., monomer flow rate, pressure, power, frequency (DC, rf or microwave), location of the substrate in the reactor, reactor geometry or configuration, and temperature. In contrast, little work has been done to relate deposition rates to monomer structures for a homologous series of monomers where the rates are obtained under identical plasma process parameters. For the particular series of fluorinated ethylenes (C2HxF4-x; x = 0-4), deposition rates were reported for ethylene (ET), vinyl fluoride, vinylidene fluoride and tetrafluoroethylene (TFE), but for plasma polymerizations carried out under different discharge conditions, e.g., pressure, current density, and electrode temperature. Apparently, relative deposition rates were reported for only two members of that series (ET, x = 4, and TFE, x = 0) for which the plasma polymerizations were conducted under identical conditions. We now present relative deposition rates for both homopolymerizations and copolymerizations of the entire series of fluorinated ethylenes (x = 0-4). Our interest in such rates stems from prior work on the plasma copolymerization of ET and TFE in which it was found that the deposition rates for the plasma copolymers, when plotted versus mol % TFE in the ET/TFE feed stock, followed a concave-downward curve situated above the straight line joining the deposition rates for the plasma homopolymers. This type of plot (observed also for an argon-ET/TFE plasma copolymerization) indicated a positive interaction between ET and TFE such that each monomer apparently "sensitized" the plasma copolymerization of the other. Since the shape of that plot is not altered if mol % TFE is replaced by F/C, the fluorine-to-carbon ratio, this paper aims (1) to show how the relative deposition rates for plasma copolymers drawn from all pairs of monomers in the C2HxF4-x series, as well as the deposition rates for the individual plasma homopolymers, vary with F/C ratios of the monomers or monomer blends, and (2) to see if those rates give rise to a common plot.
Document ID
20040089144
Acquisition Source
Ames Research Center
Document Type
Reprint (Version printed in journal)
Authors
Golub, M. A.
(NASA Ames Research Center Moffett Field CA United States)
Wydeven, T.
Date Acquired
August 21, 2013
Publication Date
January 1, 1997
Publication Information
Publication: Polymer Prepr
Volume: 38
Issue: 1
ISSN: 0032-3934
Subject Category
Life Sciences (General)
Distribution Limits
Public
Copyright
Other
Keywords
NASA Center ARC
NASA Discipline Environmental Health

Available Downloads

There are no available downloads for this record.
No Preview Available