NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The effects of feedback lighting on the circadian rhythm of locomotor activity and the reproductive maturation of the male Djungarian hamster (Phodopus sungorus)The non-parametric model of entrainment suggests that brief pulses of light, delivered between dusk and dawn can simulate the phasing effects of full photoperiods or even constant light (LL). Feedback lighting (LDFB) is a lighting condition where individual animals, otherwise in constant darkness (DD), are exposed to light in response to a monitored behavior. The specific purpose of this type of illumination is to expose the circadian cycle to light only during the subjective night. LDFB has been used to support this hypothesis in several species of nocturnal rodents and one species of diurnal primate by producing similar free-running periods in LDFB as in LL. This lighting condition has also been used to test the hypothesis that exposing the subjective night to even short duration light pulses will maintain reproductive function in long day breeders. In the Syrian hamster (Mesocricetus auratus), however, LDFB is not as photostimulatory as LL despite extensive light exposure during the subjective night. In the experiments presented here, a group of immature male Djungarian hamsters (Phodopus sungorus) were placed in individual light-tight sound attenuated chambers where they had free access to food, water and an activity wheel. The animals were exposed to one of four lighting conditions [DD, LL, LDFB or a neighbor control of feedback lighting (LDFB NC)] for approximately 30 days shortly after weaning. LDFB NC is a lighting condition where a neighbor control hamster receives the identical lighting regime as a paired animal exposing itself to LDFB, yet the neighbor has no control over it. A fifth group was exposed to a light-dark cycle of 16 hours of light and 8 hours of dark (LD16:8). This group was housed in cages in a colony room and did not have access to a running wheel. The free-running periods of the locomotor activity rhythms for hamsters exposed to LDFB and LL were not similar, unlike the results for rats, Syrian hamsters, mice, monkeys and even mature Djungarian hamsters. Immature hamsters exposed to DD and LDFB NC developed more slowly than animals exposed to LL or LD16:8, while hamsters in LDFB developed at an intermediate rate. Thus, it appears that LDFB, although capable of inducing reproductive function in immature Djungarian hamsters, is not as photostimulatory as may have been expected from current photoperiodic models, despite substantial light exposure during the subjective night. Furthermore, this data may suggest that the circadian system of 18-48 day old Djungarian hamsters are still undergoing organizational maturation.
Document ID
20040089838
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Ferraro, J. S.
(University Center at Binghamton, State University of New York 13901 United States)
Date Acquired
August 21, 2013
Publication Date
January 1, 1988
Publication Information
Publication: Journal of interdisciplinary cycle research
Volume: 19
Issue: 1
ISSN: 0022-1945
Subject Category
Life Sciences (General)
Funding Number(s)
CONTRACT_GRANT: NS23128
Distribution Limits
Public
Copyright
Other
Keywords
NASA Program Space Biology
NASA Discipline Regulatory Physiology
NASA Discipline Number 40-30
Non-NASA Center

Available Downloads

There are no available downloads for this record.
No Preview Available