NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Electrotropism of maize roots. Role of the root cap and relationship to gravitropismWe examined the kinetics of electrotropic curvature in solutions of low electrolyte concentration using primary roots of maize (Zea mays L., variety Merit). When submerged in oxygenated solution across which an electric field was applied, the roots curved rapidly and strongly toward the positive electrode (anode). The strength of the electrotropic response increased and the latent period decreased with increasing field strength. At a field strength of 7.5 volts per centimeter the latent period was 6.6 minutes and curvature reached 60 degrees in about 1 hour. For electric fields greater than 10 volts per centimeter the latent period was less than 1 minute. There was no response to electric fields less than 2.8 volts per centimeter. Both electrotropism and growth were inhibited when indoleacetic acid (10 micromolar) was included in the medium. The auxin transport inhibitor pyrenoylbenzoic acid strongly inhibited electrotropism without inhibiting growth. Electrotropism was enhanced by treatments that interfere with gravitropism, e.g. decapping the roots or pretreating them with ethyleneglycol-bis-[beta-ethylether]-N,N,N',N' -tetraacetic acid. Similarly, roots of agravitropic pea (Pisum sativum, variety Ageotropum) seedlings were more responsive to electrotropic stimulation than roots of normal (variety Alaska) seedlings. The data indicate that the early steps of gravitropism and electrotropism occur by independent mechanisms. However, the motor mechanisms of the two responses may have features in common since auxin and auxin transport inhibitors reduced both gravitropism and electrotropism.
Document ID
20040090432
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Ishikawa, H.
(Ohio State University Columbus 43210)
Evans, M. L.
Date Acquired
August 21, 2013
Publication Date
January 1, 1990
Publication Information
Publication: Plant physiology
Volume: 94
ISSN: 0032-0889
Subject Category
Life Sciences (General)
Funding Number(s)
CONTRACT_GRANT: NAGW2-97
CONTRACT_GRANT: DMB8608673
Distribution Limits
Public
Copyright
Other
Keywords
NASA Discipline Plant Biology
Non-NASA Center
NASA Discipline Number 29-20
NASA Program Space Biology

Available Downloads

There are no available downloads for this record.
No Preview Available