NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Effects of CO2 concentration and light intensity on photosynthesis of a rootless submerged plant, Ceratophyllum demersum L., used for aquatic food production in bioregenerative life support systemsIn addition to green microalgae, aquatic higher plants are likely to play an important role in aquatic food production modules in bioregenerative systems for producing feed for fish, converting CO2 to O2 and remedying water quality. In the present study, the effects of culture conditions on the net photosynthetic rate of a rootless submerged plant, Ceratophyllum demersum L., was investigated to determine the optimum culture conditions for maximal function of plants in food production modules including both aquatic plant culture and fish culture systems. The net photosynthetic rate in plants was determined by the increase in dissolved O2 concentrations in a closed vessel containing a plantlet and water. The water in the vessel was aerated sufficiently with a gas containing a known concentration of CO2 gas mixed with N2 gas before closing the vessel. The CO2 concentrations in the aerating gas ranged from 0.3 to 10 mmol mol-1. Photosynthetic photon flux density (PPFD) in the vessel ranged from 0 (dark) to 1.0 mmol m-2 s-1, which was controlled with a metal halide lamp. Temperature was kept at 28 degrees C. The net photosynthetic rate increased with increasing PPFD levels and was saturated at 0.2 and 0.5 mmol m-2 s-1 PPFD under CO2 levels of 1.0 and 3.0 mmol mol-1, respectively. The net photosynthetic rate increased with increasing CO2 levels from 0.3 to 3.0 mmol mol-1 showing the maximum value, 75 nmol O2 gDW-1 s-1, at 2-3 mmol mol-1 CO2 and gradually decreased with increasing CO2 levels from 3.0 to 10 mmol mol-1. The results demonstrate that C. demersum could be an efficient CO2 to O2 converter under a 2.0 mmol mol-1 CO2 level and relatively low PPFD levels in aquatic food production modules. c2003 COSPAR. Published by Elsevier Science Ltd. All rights reserved.
Document ID
20040096104
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Kitaya, Y.
(Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University Osaka, Japan)
Okayama, T.
Murakami, K.
Takeuchi, T.
Date Acquired
August 21, 2013
Publication Date
January 1, 2003
Publication Information
Publication: Advances in space research : the official journal of the Committee on Space Research (COSPAR)
Volume: 31
Issue: 7
Subject Category
Man/System Technology And Life Support
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available