NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Characterization and distribution of a maize cDNA encoding a peptide similar to the catalytic region of second messenger dependent protein kinasesMaize (Zea mays) roots respond to a variety of environmental stimuli which are perceived by a specialized group of cells, the root cap. We are studying the transduction of extracellular signals by roots, particularly the role of protein kinases. Protein phosphorylation by kinases is an important step in many eukaryotic signal transduction pathways. As a first phase of this research we have isolated a cDNA encoding a maize protein similar to fungal and animal protein kinases known to be involved in the transduction of extracellular signals. The deduced sequence of this cDNA encodes a polypeptide containing amino acids corresponding to 33 out of 34 invariant or nearly invariant sequence features characteristic of protein kinase catalytic domains. The maize cDNA gene product is more closely related to the branch of serine/threonine protein kinase catalytic domains composed of the cyclic-nucleotide- and calcium-phospholipid-dependent subfamilies than to other protein kinases. Sequence identity is 35% or more between the deduced maize polypeptide and all members of this branch. The high structural similarity strongly suggests that catalytic activity of the encoded maize protein kinase may be regulated by second messengers, like that of all members of this branch whose regulation has been characterized. Northern hybridization with the maize cDNA clone shows a single 2400 base transcript at roughly similar levels in maize coleoptiles, root meristems, and the zone of root elongation, but the transcript is less abundant in mature leaves. In situ hybridization confirms the presence of the transcript in all regions of primary maize root tissue.
Document ID
20040112063
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Biermann, B.
(University of California Berkeley 94720, United States)
Johnson, E. M.
Feldman, L. J.
Date Acquired
August 21, 2013
Publication Date
January 1, 1990
Publication Information
Publication: Plant physiology
Volume: 94
ISSN: 0032-0889
Subject Category
Life Sciences (General)
Distribution Limits
Public
Copyright
Other
Keywords
NASA Program Space Biology
NASA Discipline Plant Biology
NASA Discipline Number 29-20
Non-NASA Center

Available Downloads

There are no available downloads for this record.
No Preview Available