NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Vestibular factors influencing the biomedical support of humans in spaceThis paper will describe the biomedical support aspects of humans in space with respect to the vestibular system. The vestibular system is thought to be the primary sensory system involved in the short-term effects of space motion sickness although there is increasing evidence that many factors play a role in this complex set of symptoms. There is the possibility that an individual's inner sense of orientation may be strongly coupled with the susceptibility to space motion sickness. A variety of suggested countermeasures for space motion sickness will be described. Although there are no known ground-based tests that can predict space motion sickness, the search should go on. The long term effects of the vestibular system in weightlessness are still relatively unknown. Some preliminary data has shown that the otoconia are irregular in size and distribution following extended periods of weightlessness. The ramifications of this data are not yet known and because the data was obtained on lower order animals, definitive studies and results must wait until the space station era when higher primates can be studied for long durations. This leads us to artificial gravity, the last topic of this paper. The vestibular system is intimately tied to this question since it has been shown on Earth that exposure to a slow rotating room causes motion sickness for some period of time before adaptation occurs. If the artificial gravity is intermittent, will this mean that people will get sick every time they experience it? The data from many astronauts returning to Earth indicates that a variety of sensory illusions are present, especially immediately upon return to a 1-g environment. Oscillopsia or apparent motion of the visual surround upon head motion along with inappropriate eye motions for a given head motion, all indicate that there is much to be studied yet about the vestibular and CNS systems reaction to a sudden application of a steady state acceleration field like 1-g. From the above information it is obvious that the vestibular system does have unique requirements when it comes to the biomedical support of space flight. This is not to say that other areas such as cardiovascular, musculo-skeletal, immunological and hematological systems do not have their own unique requirements but that possible solutions to one system can provide continuing problems to another system. For example, artificial gravity might be helpful for long term stabilization of bone demineralization or cardiovascular deconditioning but might introduce a new set of problems in orientation, vestibular conflict and just plain body motion in a rotating space vehicle.
Document ID
20040112150
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Lichtenberg, B. K.
(Payload Systems Inc. Wellesley, MA 02181)
Date Acquired
August 21, 2013
Publication Date
January 1, 1988
Publication Information
Publication: Acta astronautica
Volume: 17
Issue: 2
ISSN: 0094-5765
Subject Category
Aerospace Medicine
Distribution Limits
Public
Copyright
Other
Keywords
Non-NASA Center
NASA Discipline Neuroscience
NASA Program Flight
NASA Discipline Number 00-00

Available Downloads

There are no available downloads for this record.
No Preview Available