NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Near-Infrared Spectra of Type Ia SupernovaeWe report near-infrared (NIR) spectroscopic observations of 12 'branch-normal' Type Ia supernovae (SNe Ia) that cover the wavelength region from 0.8 to 2.5 microns. Our sample more than doubles the number of SNe Ia with published NIR spectra within 3 weeks of maximum light. The epochs of observation range from 13 days before maximum light to 18 days after maximum light. A detailed model for a Type Ia supernovae is used to identify spectral features. The Doppler shifts of lines are measured to obtain the velocity and thus the radial distribution of elements. The NIR is an extremely useful tool to probe the chemical structure in the layers of SNe Ia ejecta. This wavelength region is optimal for examining certain products of the SNe Ia explosion that may be blended or obscured in other spectral regions. We identify spectral features from Mg II, Ca II, Si II, Fe II, Co II, Ni II, and possibly Mn II. We find no indications for hydrogen, helium, or carbon in the spectra. The spectral features reveal important clues about the physical characteristics of SNe Ia. We use the features to derive upper limits for the amount of unburned matter, to identify the transition regions from explosive carbon to oxygen burning and from partial to complete silicon burning, and to estimate the level of mixing during and after the explosion. Elements synthesized in the outer layers during the explosion appear to remain in distinct layers. That provides strong evidence for the presence of a detonation phase during the explosion as it occurs in delayed detonation or merger models. Mg II velocities are found to exceed 11,000 - 15,000 km/s, depending on the individual SNe Ia. That result suggests that burning during the explosion reaches the outermost layers of the progenitor and limits the amount of unburned material to less than 10% of the mass of the progenitor. Small residuals of unburned material are predicted by delayed detonation models but are inconsistent with pure deflagration or merger models. Differences in the spectra of the individual SNe Ia demonstrate the variety of these events.
Document ID
20040141167
Acquisition Source
Goddard Space Flight Center
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Marion, G. H.
(Texas Univ. Austin, TX, United States)
Hoeflich, P.
(Texas Univ. Austin, TX, United States)
Vacca, W. D.
(Texas Univ. Austin, TX, United States)
Wheeler, J. C.
(Texas Univ. Austin, TX, United States)
Date Acquired
August 22, 2013
Publication Date
July 1, 2003
Publication Information
Publication: Astrophysical Journal
Publisher: American Astronomical Society
Volume: 591
Issue: 1
Subject Category
Astronomy
Funding Number(s)
CONTRACT_GRANT: NAG5-7937
CONTRACT_GRANT: NSF 00-98644
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available