NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Assimilation of Stratospheric Meteorological and Constituent Observations: A ReviewThis talk reviews the assimilation of meteorological and constituent observations of the stratosphere. The first efforts to assimilate observations into stratospheric models were during the early 1980s, and a number of research studies followed during the next decade. Since the launch of the Upper Atmospheric Research Satellite (UARS) in 1991, model-assimilated data sets of the stratospheric meteorological state have been routinely available. These assimilated data sets were critical in bringing together observations from the different instruments on UARS as well as linking UARS observations to measurements from other platforms. Using trajectory-mapping techniques, meteorological assimilation analyses are, now, widely used in the analysis of constituent observations and have increased the level of quantitative study of stratospheric chemistry and transport. During the 1990s the use of winds and temperatures from assimilated data sets became standard for offline chemistry and transport modeling. variability in middle latitudes. The transport experiments, however, reveal a set of shortcomings that become obvious as systematic errors are integrated over time. Generally, the tropics are not well represented, mixing between the tropics and middle latitudes is overestimated, and the residual circulation is not accurate. These shortcomings reveal underlying fundamental challenges related to bias and noise. Current studies using model simulation and data assimilation in controlled experimentation are highlighting the issues that must be addressed if assimilated data sets are to be convincingly used to study interannual variability and decadal change. observations. The primary focus has been on stratospheric ozone, but there are efforts that investigate a suite of reactive chemical constituents. Recent progress in ozone assimilation shows the potential of assimilation to contribute to the validation of ozone observations and, ultimately, the retrieval of ozone profiles from space-based radiance measurements. Assimilated data sets provide accurate analyses of synoptic and planetary Scale At the same time, stratospheric assimilation is evolving to include constituent
Document ID
20040171555
Acquisition Source
Goddard Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Rood, Richard B.
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Pawson, Steven
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 22, 2013
Publication Date
January 1, 2004
Subject Category
Meteorology And Climatology
Meeting Information
Meeting: SPARC 2004
Location: Victoria, British Columbia
Country: Canada
Start Date: July 31, 2004
End Date: August 7, 2004
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available