NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
The Precession Index and a Nonlinear Energy Balance Climate ModelA simple nonlinear energy balance climate model yields a precession index-like term in the temperature. Despite its importance in the geologic record, the precession index e sin (Omega)S, where e is the Earth's orbital eccentricity and (Omega)S is the Sun's perigee in the geocentric frame, is not present in the insolation at the top of the atmosphere. Hence there is no one-for-one mapping of 23,000 and 19,000 year periodicities from the insolation to the paleoclimate record; a nonlinear climate model is needed to produce these long periods. A nonlinear energy balance climate model with radiative terms of form T n, where T is surface temperature and n less than 1, does produce e sin (omega)S terms in temperature; the e sin (omega)S terms are called Seversmith psychroterms. Without feedback mechanisms, the model achieves extreme values of 0.64 K at the maximum orbital eccentricity of 0.06, cooling one hemisphere while simultaneously warming the other; the hemisphere over which perihelion occurs is the cooler. In other words, the nonlinear energy balance model produces long-term cooling in the northern hemisphere when the Sun's perihelion is near northern summer solstice and long-term warming in the northern hemisphere when the aphelion is near northern summer solstice. (This behavior is similar to the inertialess gray body which radiates like T 4, but the amplitude is much lower for the energy balance model because of its thermal inertia.) This seemingly paradoxical behavior works against the standard Milankovitch model, which requires cool northern summers (Sun far from Earth in northern summer) to build up northern ice sheets, so that if the standard model is correct it must be more efficient than previously thought. Alternatively, the new mechanism could possibly be dominant and indicate southern hemisphere control of the northern ice sheets, wherein the southern oceans undergo a long-term cooling when the Sun is far from the Earth during northern summer. The cold water eventually flows north, cooling the northern hemisphere. This might explain why the northern oceans lag the southern ones when it comes to orbital forcing.
Document ID
20040171662
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Rubincam, David
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 22, 2013
Publication Date
January 1, 2004
Subject Category
Meteorology And Climatology
Meeting Information
Meeting: Western Pacific Geophysics Meeting
Location: Honolulu, HI
Country: United States
Start Date: August 16, 2004
End Date: August 20, 2004
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available