NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Central and peripheral components of short latency vestibular responses in the chickenFar-field recordings of short latency vestibular responses to pulsed cranial translation are composed of a series of positive and negative peaks occurring within 10 ms following stimulus onset. In the bird, these vestibular evoked potentials (VsEPs) can be recorded noninvasively and have been shown in the chicken and quail to depend strictly upon the activation of the vestibular component of the eighth nerve. The utility of the VsEP in the study of vestibular systems is dependent upon a clear understanding of the neural sources of response components. The primary aim of the current research in the chicken was to critically test the hypotheses that 1) responses are generated by both peripheral and central neurons and 2) peaks P1 and N1 originate from first order vestibular neurons, whereas later waves primarily depend on activity in higher order neurons. The principal strategy used here was to surgically isolate the eighth nerve as it enters the brainstem. Interruption of primary afferents of the eighth nerve in the brainstem substantially reduced or eliminated peaks beyond P2, whereas P1 and N1 were generally spared. Surgical sections that spared vestibular pathways had little effect on responses. The degree of change in response components beyond N1 was correlated with the extent of damage to central vestibular relays. These findings support the conclusion that responses are produced by both peripheral and central elements of the vestibular system. Further, response peaks later than N1 appear to be dependent upon central relays, whereas P1 and N1 reflect activity of the peripheral nerve. These findings clarify the roles of peripheral and central neurons in the generation of vestibular evoked potentials and provide the basis for a more useful and detailed interpretation of data from vestibular response testing.
Document ID
20040172659
Document Type
Reprint (Version printed in journal)
Authors
Nazareth, A. M.
(University of Missouri-Columbia United States)
Jones, T. A.
Date Acquired
August 22, 2013
Publication Date
May 1, 1998
Publication Information
Publication: Journal of vestibular research : equilibrium & orientation
Volume: 8
Issue: 3
ISSN: 0957-4271
Subject Category
Life Sciences (General)
Distribution Limits
Public
Copyright
Other
Keywords
Non-NASA Center
NASA Discipline Neuroscience
No Preview Available