NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Short latency vestibular evoked potentials in the Japanese quail (Coturnix coturnix japonica)Short-latency vestibular-evoked potentials to pulsed linear acceleration were characterized in the quail. Responses occurred within 8 ms following the onset of stimuli and were composed of a series of positive and negative peaks. The latencies and amplitudes of the first four peaks were quantitatively characterized. Mean latencies at 1.0 g ms-1 ranged from 1265 +/- 208 microseconds (P1, N = 18) to 4802 +/- 441 microseconds (N4, N = 13). Amplitudes ranged from 3.72 +/- 1.51 microV (P1/N1, N = 18) to 1.49 +/- 0.77 microV (P3/N3, N = 16). Latency-intensity (LI) slopes ranged from -38.7 +/- 7.3 microseconds dB-1 (P1, N = 18) to -71.6 +/- 21.9 microseconds dB-1 (N3, N = 15) and amplitude-intensity (AI) slopes ranged from 0.20 +/- 0.08 microV dB-1 (P1/N1, N = 18) to 0.07 +/- 0.04 microV dB-1 (P3/N3, N = 11). The mean response threshold across all animals was -21.83 +/- 3.34 dB re: 1.0 g ms-1 (N = 18). Responses remained after cochlear extirpation showing that they could not depend critically on cochlear activity. Responses were eliminated by destruction of the vestibular end organs, thus showing that responses depended critically and specifically on the vestibular system. The results demonstrate that the responses are vestibular and the findings provide a scientific basis for using vestibular responses to evaluate vestibular function through ontogeny and senescence in the quail.
Document ID
20040172953
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
External Source(s)
Authors
Jones, S. M.
(University of Missouri School of Medicine Columbia 65212, United States)
Jones, T. A.
Shukla, R.
Date Acquired
August 22, 2013
Publication Date
June 1, 1997
Publication Information
Publication: Journal of comparative physiology. A, Sensory, neural, and behavioral physiology
Volume: 180
Issue: 6
ISSN: 0340-7594
Subject Category
Life Sciences (General)
Distribution Limits
Public
Copyright
Other
Keywords
NASA Discipline Neuroscience
Non-NASA Center

Available Downloads

There are no available downloads for this record.
No Preview Available