NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Human life support for advanced space explorationThe requirements for a human life support system for long-duration space missions are reviewed. The system design of a controlled ecological life support system is briefly described, followed by a more detailed account of the study of the conceptual design of a Lunar Based CELSS. The latter is to provide a safe, reliable, recycling lunar base life support system based on a hybrid physicochemical/biological representative technology. The most important conclusion reached by this study is that implementation of a completely recycling CELSS approach for a lunar base is not only feasible, but eminently practical. On a cumulative launch mass basis, a 4-person Lunar Base CELSS would pay for itself in approximately 2.6 years relative to a physicochemical air/water recycling system with resupply of food from the Earth. For crew sizes of 30 and 100, the breakeven point would come even sooner, after 2.1 and 1.7 years, respectively, due to the increased mass savings that can be realized with the larger plant growth units. Two other conclusions are particularly important with regard to the orientation of future research and technology development. First, the mass estimates of the Lunar Base CELSS indicate that a primary design objective in implementing this kind of system must be to minimized the mass and power requirement of the food production plant growth units, which greatly surpass those of the other air and water recycling systems. Consequently, substantial research must be directed at identifying ways to produce food more efficiently. On the other hand, detailed studies to identify the best technology options for the other subsystems should not be expected to produce dramatic reductions in either mass or power requirement of a Lunar Base CELSS. The most crucial evaluation criterion must, therefore, be the capability for functional integration of these technologies into the ultimate design of the system. Secondly, this study illustrates that existing or near-term technologies are adequate to implement a Lunar Base CELSS. There are no apparent "show-stoppers" which require the development of new technologies. However, there are several areas in which new materials and technologies could be used for a more efficient implementation of the system, e.g., by decreasing mass or power requirement and increasing recycling efficiency. These areas must be further addressed through research and development. Finally, although this study focused on the development of a Lunar Base CELSS, the same technologies and a nearly identical design would be appropriate for a Mars base. Actually, except for the distance of transportation, the implementation of a CELSS on Mars would even be easier than it would be on the Moon. The presence of atmospheric CO2 on Mars, although in low concentration, coupled with the fact that the day/night cycle on Mars is very similar to that on Earth, makes the use of light-weight, greenhouse-like structures for growing food plants even more feasible than on the Moon. There are some environmental problems, which would have to be dealt with, like dust storms and the large amount of the ultraviolet radiation incident on the planet's surface. However, the materials and methods are largely available today to develop such a life support system for a Mars base.
Document ID
20040173061
Document Type
Reprint (Version printed in journal)
Authors
Schwartzkopf, S. H. (Inc. Palo Alto, California, United States)
Date Acquired
August 22, 2013
Publication Date
January 1, 1997
Publication Information
Publication: Advances in space biology and medicine
Volume: 6
ISSN: 1569-2574
Subject Category
Man/System Technology and Life Support
Distribution Limits
Public
Copyright
Other
Keywords
Review, Tutorial
NASA Discipline Number 61-10
NASA Discipline Life Support Systems
NASA Center ARC
Review