NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Activation and proliferation of lymphocytes and other mammalian cells in microgravityThe experimental findings reviewed in this chapter support the following conclusions: Proliferation. Human T-lymphocytes, associated with monocytes as accessory cells, show dramatic changes in the centrifuge, in the clinostat and in space. In free-floating cells the mitogenic response is depressed by 90% in microgravity, whereas in cells attached to a substratum activation is enhanced by 100% compared to 1-G ground and inflight controls. The duration of phase G1 of the mitotic cycle of HeLa cells is reduced in hypergravity, resulting in an increased proliferation rate. Other systems like Friend cells and WI38 human embryonic lung cells do not show significant changes. Genetic expression and signal transduction. T-lymphocytes and monocytes show important changes in the expression of cytokines like interleukin-1, interleukin-2, interferon-gamma and tumor necrosis factor. The data from space experiments in Spacelab, Space Shuttle mid-deck, and Biokosmos have helped to clarify certain aspects of the mechanism of T-cell activation. Epidermoid A431 cells show changes in the genetic expression of the proto-oncogenes c-fos and c-jun in the clinostat and in sounding rockets. Membrane function, in particular the binding of ligates as first messengers of a signal, is not changed in most of the cell systems in microgravity. Morphology and Mortility. Free cells, lymphocytes in particular, are able to move and form aggregates in microgravity, indicating that cell-cell contacts and cell communications do take place in microgravity. Dramatic morphological and ultrastructural changes are not detected in cells cultured in microgravity. Important experiments with single mammalian cells, including immune cells, were carried out recently in three Spacelab flights, (SL-J, D-2, and IML-2 in 1992, 1993, and 1994, respectively). The results of the D-2 mission have been published in ref. 75; those of the IML-2 mission in ref. 76. Finally, many cell biology experiments in space have suffered in the past from a lack of adequate controls (like 1-G centrifuges) and of proper experimental conditions (like well-controlled temperature). In this respect the availability of Biorack, outfitted with proper incubators with 1-G control centrifuge as well as a glovebox with a microscope, is a great advantage. It is also desirable that cell biology experiments in space are accompanied or even preceded by a program of ground-based investigations in the fast rotating clinostat and in the centrifuge, and that preparatory experiments be done in parabolic flights and sounding rockets, whenever possible. Proper publication of the results of space experiments is another important need. A great number of data have been published in proceedings and reports that are not available to the broad scientific community. To guarantee the credibility and the international recognition of space biology it is important that the results be published in international, peer reviewed journals.
Document ID
20040173064
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Cogoli, A.
(Space Biology Group, ETH Technopark, Zurich, Switzerland)
Cogoli-Greuter, M.
Date Acquired
August 22, 2013
Publication Date
January 1, 1997
Publication Information
Publication: Advances in space biology and medicine
Volume: 6
ISSN: 1569-2574
Subject Category
Aerospace Medicine
Distribution Limits
Public
Copyright
Other
Keywords
manned
STS-42 Shuttle Project
STS-9 Shuttle Project
Parabolic Flight
MASER Project
NASA Program Flight
NASA Discipline Regulatory Physiology
STS-61A Shuttle Project
Non-NASA Center
STS-40 Shuttle Project
short duration
unmanned
NASA Discipline Number 00-00
Flight Experiment

Available Downloads

There are no available downloads for this record.
No Preview Available