NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Noninvasive analysis of human neck muscle functionSTUDY DESIGN. Muscle use evoked by exercise was determined by quantifying shifts in signal relaxation times of T2-weighted magnetic resonance images. Images were collected at rest and after exercise at each of two intensities (moderate and intense) for each of four head movements: 1) extension, 2) flexion, 3) rotation, and 4) lateral flexion. OBJECTIVE. This study examined the intensity and pattern of neck muscle use evoked by various movements of the head. The results will help elucidate the pathophysiology, and thus methods for treating disorders of the cervical musculoskeletal system. SUMMARY OF BACKGROUND DATA. Exercise-induced contrast shifts in T2 has been shown to indicate muscle use during the activity. The noninvasive nature of magnetic resonance imaging appears to make it an ideal approach for studying the function of the complex neuromuscular system of the neck. METHODS. The extent of T2 increase was examined to gauge how intensely nine different neck muscles or muscle pairs were used in seven subjects. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation was assessed to infer the pattern of use among and within individual neck muscles or muscle pairs. RESULTS. Signal relaxation increased with exercise intensity for each head movement. The absolute and relative cross-sectional area of muscle showing a shift in signal relaxation also increased with exercise load. Neck muscles or muscle pairs extensively used to perform each head movement were: extension--semispinalis capitis and cervicis and splenius capitis; flexion--sternocleidomastoid and longus capitis and colli; rotation--splenius capitis, levator scapulae, scalenus, semispinalis capitis ipsilateral to the rotation, and sternocleidomastoid contralateral; and lateral flexion--sternocleidomastoid CONCLUSION. The results of this study, in part, agree with the purported functions of neck muscles derived from anatomic location. This also was true for the few selected muscles that have been examined in human electromyographic studies. Neck muscle function and morphology can be studied at a detailed level using exercise-induced shifts in magnetic resonance images.
Document ID
20040173332
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Conley, M. S.
(University of Georgia Athens, United States)
Meyer, R. A.
Bloomberg, J. J.
Feeback, D. L.
Dudley, G. A.
Date Acquired
August 22, 2013
Publication Date
December 1, 1995
Publication Information
Publication: Spine
Volume: 20
Issue: 23
ISSN: 0362-2436
Subject Category
Aerospace Medicine
Distribution Limits
Public
Copyright
Other
Keywords
NASA Program Space Physiology and Countermeasures
NASA Center JSC
NASA Discipline Musculoskeletal
NASA Discipline Number 26-10

Available Downloads

There are no available downloads for this record.
No Preview Available