NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Human torque velocity adaptations to sprint, endurance, or combined modes of trainingWe had groups of athletes perform sprint and endurance run training independently or concurrently for 8 weeks to examine the voluntary in vivo mechanical responses to each type of training. Pre- and posttraining angle-specific peak torque during knee extension and flexion were determined at 0, 0.84, 1.65, 2.51, 3.35, 4.19, and 5.03 radian.sec-1 and normalized for lean body mass. Knee extension torque in the sprint-trained group increased across all test velocities, the endurance-trained group increased at 2.51, 3.34, 4.19, and 5.03 radian.sec-1, and the group performing the combined training showed no change at any velocity. Knee flexion torque of the sprint and combined groups decreased at 0.84, 1.65, and 2.51 radian.sec-1. Knee flexion torque in the sprint-trained group also decreased at 0 radian.sec-1 and in the combined group at 3.34 radian.sec-1. Knee flexion torque in the endurance-trained group showed no change at any velocity of contraction. Mean knee flexion:extension ratios across the test velocities significantly decreased in the sprint-trained group. Knee extension endurance during 30 seconds of maximal contractions significantly increased in all groups. Only the sprint-trained group showed a significant increase in endurance of the knee flexors. These data suggest that changes in the voluntary in vivo mechanical characteristics of knee extensor and flexor skeletal muscles are specific to the type of run training performed.
Document ID
20050000611
Acquisition Source
Legacy CDMS
Document Type
Reprint (Version printed in journal)
Authors
Shealy, M. J.
(Ohio University Athens)
Callister, R.
Dudley, G. A.
Fleck, S. J.
Date Acquired
August 22, 2013
Publication Date
September 1, 1992
Publication Information
Publication: The American journal of sports medicine
Volume: 20
Issue: 5
ISSN: 0363-5465
Subject Category
Life Sciences (General)
Distribution Limits
Public
Copyright
Other
Keywords
NASA Discipline Musculoskeletal
Non-NASA Center

Available Downloads

There are no available downloads for this record.
No Preview Available