NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
A New Approach to using a Cloud-Resolving Model to Study the Interactions between Clouds, Precipitation and AerosolsNumerical cloud models, which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Because cloud-scale dynamics are treated explicitly, uncertainties stemming from convection that have to be parameterized in (hydrostatic) large-scale models are obviated, or at least mitigated, in cloud models. Global models will use the non-hydrostatic framework when their horizontal resolution becomes about 10 kilometers, the theoretical limit for the hydrostatic approximation. This juncture will be reached one to two decades from now. Over the past generation, voluminous datasets on atmospheric convection have been accumulated from radar, instrumented aircraft, satellites, and rawinsonde measurements in field campaigns, enabling the detailed evaluation of models. Improved numerical methods have resulted in more accurate and efficient dynamical cores in models. Improvements have been made in the parameterizations of microphysical processes, radiation, boundary-layer effects, and turbulence; however, microphysical parameterizations remain a major source of uncertainty in all classes of atmospheric models. In recent years, exponentially increasing computer power has extended cloud-resolving-model integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-kilometer scales are resolved in horizontal domains as large as 10,000 kilometers in two dimensions, and 1,000 x 1,000 square kilometers in three-dimensions. Cloud models now provide statistical information useful for developing more realistic physically-based parameterizations for climate models and numerical weather prediction models. A review of developments and applications of cloud models in the past, present and future will be presented in this talk. In particular, a new approach to using cloud-resolving models to study the interactions between clouds, precipitation and aerosols will be presented.
Document ID
20050136676
Acquisition Source
Goddard Space Flight Center
Document Type
Conference Paper
Authors
Tao, Wei-Kuo
(NASA Goddard Space Flight Center Greenbelt, MD, United States)
Date Acquired
August 23, 2013
Publication Date
January 1, 2005
Subject Category
Meteorology And Climatology
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available