NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Effects of Initial Powder Size on the Mechanical Properties and Microstructure of As-Extruded GRCop-84GRCop-84 was developed to meet the mechanical and thermal property requirements for advanced regeneratively cooled rocket engine main combustion chamber liners. It is a ternary Cu- Cr-Nb alloy having approximately 8 at% Cr and 4 at% Nb. The chromium and niobium constituents combine to form 14 vol% Cr2Nb, the strengthening phase. The alloy is made by producing GRCop-84 powder through gas atomization and consolidating the powder using extrusion, hot isostatic pressing (HIP) or vacuum plasma spraying (VPS). GRCop-84 has been selected by Rocketdyne, Ratt & Wlutney and Aerojet for use in their next generation of rocket engines. GRCop-84 demonstrates favorable mechanical and thermal properties at elevated temperatures. Compared to NARloy-Z, the currently used inaterial in the Space Shuttle, GRCop-84 has approximately twice the yield strength, 10-1000 times the creep life, and 1.5-2.5 times the low cycle fatigue life. The thermal expansion of GRCop-84 is 7515% less than NARloy-Z which minimizes thermally induced stresses. The thermal conductivity of the two alloys is comparable at low temperature but NARloy-Z has a 20-50 W/mK thermal conductivity advantage at typical rocket engine hot wall temperatures. GRCop-84 is also much more microstructurally stable than NARloy-Z which translates into better long term stability of mechanical properties. Previous research into metal alloys fabricated by means of powder metallurgy (PM), has demonstrated that initial powder size can affect the microstructural development and mechanical properties of such materials. Grain size, strength, ductility, size of second phases, etc., have all been shown to vary with starting powder size in PM-alloys. This work focuses on characterizing the effect of varying starting powder size on the microstructural evolution and mechanical properties of as- extruded GRCop-84. Tensile tests and constant load creep tests were performed on extrusions of four powder meshes: +140 mesh (great3er than l05 micron powder size), -140 mesh (less than or equal to 105 microns), -140 plus or minus 270 (53 - 105 microns), and - 270 mesh (less than or equal to 53 microns). Samples were tested in tension at room temperature and at 500 C (932 F). Creep tests were performed under vacuum at 500 C using a stress of 111 MPa (16.1 ksi). The fracture surfaces of selected samples from both tests were studied using a Scanning Electron Microscope (SEM). The as-extruded materials were also studied, using both optical microscopy and SEM analysis, to characterize changes within the microstructure.
Document ID
20050186636
Acquisition Source
Headquarters
Document Type
Conference Paper
Authors
Okoro, Chika L.
(Florida Agricultural and Mechanical Univ. Tallahassee, FL, United States)
Date Acquired
August 23, 2013
Publication Date
January 1, 2004
Publication Information
Publication: Research Symposium II
Subject Category
Metals And Metallic Materials
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available