NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Photo-Curing: UV Radiation curing of polymersThe Polymers Branch of the Materials Division is dedicated to the development of high-performance for a variety of applications. Areas of significant interest include high- temperature polymers, low density, and high strength insulating materials, conductive polymers, and high density polymer electrolytes. This summer our group is working diligently on a photo-curing project. There is interest in the medical community feel the need for a new and improved balloon that will be used for angioplasty (a form of heart surgery). This product should maintain flexibility but add many other properties. Like possibly further processability and resistance to infection. Our group intends on coming up with this product by using photo-enolization (or simply, photo-curing) by Diels-Alder trapping. The main objective was to synthesize a series of new polymers by Diels-Alder cycloaddition of photoenols with more elastomeric properties. Our group was responsible for performing the proper photo-curing techniques of the polymers with diacrylates and bismaleimides, synthesizing novel monomers, and evaluating experimental results. We attempted to use a diacrylate to synthesize the polymer because of previous research done within the Polymers Branch here at NASA. Most acrylates are commercially available, have more elastometric properties than a typical rigid aromatic structure has and they contain ethylene oxides in the middle of their structure that create extensive flexibility. The problem we encountered with the acrylates is that they photo chemically and thermally self polymerize and create diradicals at low temperatures; these constraints caused a lot of unnecessary side reactions. We want to promote solely, diketone polymerization because this type of polymerization has the ability to cause very elastic polymers. We chose to direct our attention towards the usage of maleimides because they are known for eliminating these unnecessary side reactions.
Document ID
20050186819
Acquisition Source
Headquarters
Document Type
Conference Paper
Authors
Inman, Christina A.
(Spelman Coll. Atlanta, GA, United States)
Date Acquired
August 23, 2013
Publication Date
January 1, 2004
Publication Information
Publication: Research Symposium I
Subject Category
Nonmetallic Materials
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available