NTRS - NASA Technical Reports Server

Back to Results
Effects of Various Wavelength Ranges of Vacuum Ultraviolet Radiation on Teflon FEP Film InvestigatedTeflon Fluorinated Ethylene Propylene (FTP) films (DuPont) have been widely used for spacecraft thermal control and have been observed to become embrittled and cracked upon exposure to the space environment. This degradation has been attributed to a synergistic combination of radiation and thermal effects. A research study was undertaken at the NASA Glenn Research Center to examine the effects of different wavelength ranges of vacuum ultraviolet (VUV) radiation on the degradation of the mechanical properties of FEP. This will contribute to an overall understanding of space radiation effects on Teflon FEP, and will provide information necessary to determine appropriate techniques for using laboratory tests to estimate space VUV degradation. Research was conducted using inhouse facilities at Glenn and was carried out, in part, through a grant with the Cleveland State University. Samples of Teflon FEP film of 50.8 microns thickness were exposed to radiation from a VUV lamp from beneath different cover windows to provide different exposure wavelength ranges: MgF2 (115 to 400 nm), crystalline quartz (140 to 400 nm), and fused silica (FS, 155 to 400 nm). Following exposure, FEP film specimens were tensile tested to determine the ultimate tensile strength and elongation at failure as a function of the exposure duration for each wavelength range. The graphs show the effect of ultraviolet exposure on the mechanical properties of the FEP samples.
Document ID
Document Type
Dever, Joyce A.
(NASA Glenn Research Center Cleveland, OH, United States)
McCracken, Cara A.
(NASA Glenn Research Center Cleveland, OH, United States)
Date Acquired
September 7, 2013
Publication Date
May 1, 2004
Publication Information
Publication: Research and Technology 2003
Subject Category
Nonmetallic Materials
Distribution Limits
Work of the US Gov. Public Use Permitted.

Available Downloads

NameType 20050192336.pdf STI