NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Optical Spectroscopy of Stardust SamplesThe Stardust spacecraft collected dust samples of the Kuiper belt comet 81P Wild-2 in aerogel and returned them to Earth January 15, 2006. Preliminary examination (PE) of the collected dust includes teams focused on mineralogy, chemical composition, isotopic measurements, organic analysis, cratering and spectroscopic properties. The main PE science goals are to provide an initial characterization of the returned samples with an emphasis on the capture process and its effects on the samples, a comparison of Stardust samples to other meteoritic materials, and the abundance of presolar materials in the Stardust samples. The science objectives of the Spectroscopy team are to obtain spectroscopic data on Stardust particles through infrared (IR), UV/Vis and Raman measurements of particles in aerogel, extracted particles, keystones, and microtome thin sections. These data will be used to answer fundamental science questions about the nature of the samples, but will also serve as preliminary mineralogical data to guide follow-on measurements that will be performed in the other preliminary examination teams. The IR characteristics of Stardust particles are measured to determine: 1) the nature of the indigenous 3.4 micron organic feature, is it detected and can it be differentiated/deconvolved from the contaminated aerogel? How does it compare to features observed in interplanetary dust particles (IDPs) and to astronomical measurements of comets and interstellar dust? 2) the shape and fine structure within the 10 micron silicate feature. Overlap with the strong Si-O stretching vibration from the aerogel complicates this analysis, but we hope to determine if the feature is dominated by amorphous silicates such as those observed in IDPs and comets and whether or not crystalline silicates (e.g. olivine, pyroxene, clays) are present, 3) the presence of secondary (alteration) phases. Deep Impact results suggest that IR observations of Stardust particles should be evaluated for the presence of hydrated materials (water bands at 3 and 6 microns) and carbonates (6.8 microns and other resonances) and 4) the detection of crystalline features in the far-IR (20-100 microns) region where crystalline silicates and other minerals have strong bands that can be used both for phase analysis and phase chemistry. It has been demonstrated that these far-IR measurements can be obtained in situ on particles in aerogel keystones.
Document ID
20060022080
Acquisition Source
Johnson Space Center
Document Type
Preprint (Draft being sent to journal)
Authors
Keller, Lindsay P.
(NASA Johnson Space Center Houston, TX, United States)
Date Acquired
August 23, 2013
Publication Date
January 1, 2006
Subject Category
Astronomy
Meeting Information
Meeting: International Mineralogical Association
Location: Kobe
Country: Japan
Start Date: July 22, 2006
End Date: July 28, 2006
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available