NTRS - NASA Technical Reports Server

Back to Results
A Case for Developing a Ground Based Replication of the Earth, Moon and Mars Spaceflight InfrastructureWhen the systems are developed and in place to provide the services needed to operate en route and on the Lunar and Martian surfaces, an Earth based replication will need to be in place for the safety and protection of mission success. The replication will entail all aspects of the flight configuration end to end but will not include any closed loop systems. This would replicate the infrastructure from Lunar and Martian robots, manned surface excursions, through man and unmanned terrestrial bases, through the various types of communication systems and technologies, manned and un-manned space vehicles (large and small), to Earth based systems and control centers. An Earth based replicated infrastructure will enable checkout and test of new technologies, hardware, software updates and upgrades and procedures without putting humans and missions at risk. Analysis of events, what ifs and trouble resolution could be played out on the ground to remove as much risk as possible from any type of proposed change to flight operational systems. With adequate detail, it is possible that failures could be predicted with a high probability and action taken to eliminate failures. A major factor in any mission to the Moon and to Mars is the complexity of systems, interfaces, processes, their limitations, associated risks and the factor of the unknown including the development by many contractors and NASA centers. The need to be able to introduce new technologies over the life of the program requires an end to end test bed to analyze and evaluate these technologies and what will happen when they are introduced into the flight system. The ability to analyze system behaviors end to end under varying conditions would enhance safety e.g. fault tolerances. This analysis along with the ability to mine data from the development environment (e.g. test data), flight ops and modeling/simulations data would provide a level of information not currently available to operations and astronauts. In this paper we will analyze the beginnings of such a replication and what it could do in terms of reducing risk in the near term for development. We will analyze the Space Shuttle Main Engine (SSME) test lab which has to a large extent accomplished this replication for the SSME and has been highly successful in analyzing hardware and software problems and changes. The cost of replicating the flight system as proposed here could be very high if attempted as an afterthought. We will describe the initial steps for the development of a replication of this infrastructure starting with the communication infrastructure. The Constellation of Labs (CofL) under the Command, Control, Communication and Information (C3I) project for the NASA Exploration Initiative will provide the initial foundation upon which to base this replication. Simply put, there is very little margin for error in high latency situations e.g. en-route to/from Mars or in an autonomous process on the Lunar far side. Any thought out approach to reduce risk and increase safety needs to be accomplished end to end with the actual systems configuration.
Document ID
Document Type
Conference Paper
Bradford, Robert N.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Best, Susan L.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
August 23, 2013
Publication Date
January 1, 2006
Subject Category
Lunar And Planetary Science And Exploration
Meeting Information
AIAA SpaceOps 2006(Rome)
Distribution Limits
Work of the US Gov. Public Use Permitted.
No Preview Available