NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Non-spherical Lobate Chondrules in CO3.0 Y-81020: General Implications for the Formation of Low-FeO Porphyritic Chondrules in CO ChondritesNon-spherical chondrules (arbitrarily defined as having aspect ratios greater than or equal to 1.20) in CO3.0 chondrites comprise multi-lobate, distended, and highly irregular objects with rounded margins; they constitute approx. 70% of the type-I (low-FeO) porphyritic chondrules in Y-81020, approx. 75% of such chondrules in ALHA77307, and approx. 60% of those in Colony. Although the proportion of non-spherical type-I chondrules in LL3.0 Semarkona is comparable (approx. 60%), multi-lobate OC porphyritic chondrules (with lobe heights equivalent to a significant fraction of the mean chondrule diameter) are rare. If the non-spherical type-I chondrules in CO chondrites had formed from totally molten droplets, calculations indicate that they would have collapsed into spheres within approx. 10(exp -3) s, too little time for their 20-micrometer-size olivine phenocrysts to have grown from the melt. These olivine grains must therefore be relicts from an earlier chondrule generation; the final heating episode experienced by the non-spherical chondrules involved only minor amounts of melting and crystallization. The immediate precursors of the individual non-spherical chondrules may have been irregularly shaped chondrule fragments whose fracture surfaces were rounded during melting. Because non-spherical chondrules and circular chondrules form a continuum in shape and have similar grain sizes, mineral and mesostasis compositions, and modal abundances of non-opaque phases, they must have formed by related processes. We conclude that a large majority of low-FeO chondrules in CO3 chondrites experienced a late, low-degree melting event. Previous studies have shown that essentially all type-II (high-FeO) porphyritic chondrules in Y-81020 formed by repeated episodes of low-degree melting. It thus appears that the type-I and type-II porphyritic chondrules in Y-81020 (and, presumably, all CO3 chondrites) experienced analogous formation histories. Because these two types constitute approx. 95% of all CO chondrules, it is clear that chondrule recycling was the rule in the CO chondrule-formation region and that most melting events produced only low degrees of melting. The rarity of significantly non-spherical, multi-lobate chondrules in Semarkona may reflect more-intense heating of chondrule precursors in the ordinary-chondrite region of the solar nebula.
Document ID
20060049070
Acquisition Source
Goddard Space Flight Center
Document Type
Preprint (Draft being sent to journal)
Authors
Rubin, Alan E.
(California Univ. Los Angeles, CA, United States)
Wasson, John T.
(California Univ. Los Angeles, CA, United States)
Date Acquired
August 23, 2013
Publication Date
May 31, 2006
Publication Information
Publication: Geochimica et Cosmochimica Acta
Publisher: Elsevier Science Publishers Ltd.
Volume: 69
Issue: 1
Subject Category
Lunar And Planetary Science And Exploration
Funding Number(s)
CONTRACT_GRANT: NAG5-12967
CONTRACT_GRANT: NAG5-12887
Distribution Limits
Public
Copyright
Other

Available Downloads

There are no available downloads for this record.
No Preview Available