NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Effect of Ring Current Ions on Electromagnetic Ion Cyclotron Wave Dispersion RelationElectromagnetic ion cyclotron (EMIC) waves are widely observed in the inner and outer magnetosphere, at geostationary orbit, at high latitudes along the plasmapause, and at the ionospheric altitudes. Interaction of the Ring Current (RC) ions and EMIC waves causes ion scattering into the loss cone and leads to decay of the RC, especially during the main phase of storms when the RC decay times of about one hour or less are observed. The oblique EMIC waves damp due to Landau resonance with the thermal plasmaspheric electrons, and subsequent transport of the dissipating wave energy into the ionosphere below causes an ionosphere temperature enhancement. Induced scattering of these waves by the plasmaspheric thermal ions leads to ion temperature enhancement, and forms a so-called hot zone near the plasmapause where the temperature of core plasma ions can reach tens of thousands of degrees. Relativistic electrons in the outer radiation belt also interact well with the EMIC waves, and during the main and/or recovery phases of the storms these electrons can easily be scattered into the loss cone over a time scale from several hours to a day. The plasma density distribution in the magnetosphere and the ion content play a critical role in EMIC wave generation and propagation, but the wave dispersion relation in the known RC-EMIC wave interaction models is assumed to be determined by the thermal plasma distribution only. In these models, the modification of the EMIC wave dispersion relation caused by the RC ions is not taken into account, and the RC ions are only treated as a source of free energy in order to generate EMIC waves. At the same time, the RC ions can dominate the thermal magnetospheric content in the night MLT sector at great L shells during the main and/or recovery storm phase. In this study, using our self-consistent RC-EMIC wave model [Khazanov et al., 2006], we simulate the May 1998 storm in order to quantify the global EMIC wave redistribution caused by taking into account the RC ions in the EMIC wave dispersion relation. The dramatic wave pattern redistribution is observed in the postdusk-predawn MLT sector (night sector) for L greater than 5. We found the intense EMIC waves (about a few nT) there during the main and early recovery phases of the storm. The observed wave generation in this sector is caused by taking into account the EMIC wave dispersion change due to the RC ions. There are no waves at these locations in our model if the RC ions are taken into account in the wave growth rate only, and the wave dispersion relation is only governed by the thermal plasmaspheric model.
Document ID
20070002141
Acquisition Source
Marshall Space Flight Center
Document Type
Conference Paper
Authors
Gamayunov, K. V.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Khazanov, G. V.
(NASA Marshall Space Flight Center Huntsville, AL, United States)
Date Acquired
August 24, 2013
Publication Date
January 1, 2006
Subject Category
Geophysics
Meeting Information
Meeting: 2006 Huntsville Workshop
Location: Nashville, TN
Country: United States
Start Date: October 2, 2006
End Date: October 6, 2006
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.

Available Downloads

There are no available downloads for this record.
No Preview Available