NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
UAV-Based L-Band SAR with Precision Flight Path ControlNASA's Jet Propulsion Laboratory is currently implementing a reconfigurable polarimetric L-band synthetic aperture radar (SAR), specifically designed to acquire airborne repeat track interferometric (RTI) SAR data, also know as differential interferometric measurements. Differential interferometry can provide key displacement measurements, important for the scientific studies of Earthquakes and volcanoes. Using precision real-time GPS and a sensor controlled flight management system, the system will be able to fly predefined paths with great precision. The radar will be designed to operate on a UAV (Unmanned Arial Vehicle) but will initially be demonstrated on a minimally piloted vehicle (MPV), such as the Proteus build by Scaled Composites. The application requires control of the flight path to within a 10 meter tube to support repeat track and formation flying measurements. The design is fully polarimetric with an 80 MHz bandwidth (2 meter range resolution) and 16 kilometer range swath. The antenna is an electronically steered array to assure that the actual antenna pointing can be controlled independent of the wind direction and speed. The system will nominally operate at 45,000 ft. The program started out as a Instrument Incubator Project (IIP) funded by NASA Earth Science and Technology Office (ESTO).
Document ID
20070035913
Acquisition Source
Jet Propulsion Laboratory
Document Type
Preprint (Draft being sent to journal)
External Source(s)
Authors
Madsen, Soren N.
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Hensley, Scott
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Wheeler, Kevin
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Sadowy, Greg
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Miller, Tim
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Muellerschoen, Ron
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Lou, Yunling
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Rosen, Paul
(Jet Propulsion Lab., California Inst. of Tech. Pasadena, CA, United States)
Date Acquired
August 24, 2013
Publication Date
November 8, 2004
Subject Category
Earth Resources And Remote Sensing
Meeting Information
Meeting: Remote Sensing of the Atmosphere, Ocean, Environment, and Space
Location: Honolulu, HI
Country: United States
Start Date: November 8, 2004
End Date: November 11, 2004
Distribution Limits
Public
Copyright
Other
Keywords
flight control
InSAR
synthetic aperture radar
airborne repeat track interferometry

Available Downloads

There are no available downloads for this record.
No Preview Available